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Supplementary Figures
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Supplementary Fig. 1. A comparison between Leonardo-DeStripe and conventional 2D band-pass FFT
filter with different angular coverages of the wedge-shaped mask. From left to right, the angular coverage
of the masking region in the FFT filter increases from +9° to +29°. Note that the GNN in Leonardo-DeStripe
is operated after downsampling (ratio of 3).
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Random structured noise Simulated striping image
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Supplementary Fig. 2. Simulation of striping SPIM. Adipose tissue is used as a stripe-free ground truth
image. Structured noise is simulated to mimic horizontal and multiplicative stripes.
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SPIM Leonardo-DeStripe MDSR

Supplementary Fig. 3. Stripe removal results on zebrafish brain dataset. Leonardo-DeStripe successfully
removes the thick stripes without dampening the Fourier projection, compared to the residual stripes from
MDSR.
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Leonardo-DeStripe

Supplementary Fig. 4. Stripe removal result using Leonardo-DeStripe on a zebrafish brain dataset. The
stripes in the input dataset, which are originally horizontal (Fig. 2F in the main text). We manually rotate the
stack 45° to test the extensibility of Leonardo-DeStripe.
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Supplementary Fig. 5. Simulation of two partially degraded SPIM volumes. Deteriorated stacks are simu-
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lated to become more degraded as they get farther from the illumination sources.
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Supplementary Fig. 6. An illustration of registration workflow in Leonardo which is based on ANTsPy (ants).
From coarse to fine, Leonardo registers input datasets using their maximum intensity projections (along y
axis, i.e., yMIP or along z axis, i.e., zMIP), 3D downsampled and cropped volume stacks (BoundingBox),
and extracted point anchors at full resolution, from step to step.

Liu et al. 2024 Leonardo 8



A Original

Back det. (moving) Front det. (unchanged) 3D overlay

2D overlay

Fitness = 0.125 Fitness = 0.42

Supplementary Fig. 7. Registration performance from coarse to fine. The stack acquired using camera in
the back is gradually aligned with the volume captured with camera in the front (white and orange arrows
in the 3D overlay and white arrows in 2D overlay at a depth of 596 um).
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Supplementary Fig. 8. The whole Leonardo-Fuse workflow when registration is required on a H2B-GFP
labeled transgenic zebrafish. Leonardo-Fuse (along illumination) is first performed twice for stacks with
different detection cameras independently. Registration is then optimized based on fusion result along illu-
mination. Using registered stacks, Leonardo-Fuse (along detection) is realized as final step.
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Supplementary Fig. 9. Normal Leonardo workflow, where DeStripe module is performed on individual
dataset separately. Fuse module is then used for dataset integration, which is able to not only fuse stack
to maximize optical coverage but also resolve remaining extremely thick and dark stripes after DeStripe
(white arrows).
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DeStripe-Fuse
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pendently, this fusion-first approach improves computational efficiency, as Leonardo-DeStripe is performed
Leonardo

Leonardo-DeStripe is performed multiple times on datasets with opposite illumination orientations inde-
only once.

Supplementary Fig. 10. Workflow of Leonardo-DeStripe-Fuse. Compared to the normal workflow in which
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Supplementary Fig. 11. Deconvolution results from foundation model UniFMIR, one of the most recent
universal fluorescence microscopy-based image restoration models to address different restoration prob-
lems. It can be applied to enhance resolution (yellow arrow) right after Leonardo-Fuse removing all blurry
regions (white arrow).

Before FM

After FM
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ens

Supplementary Fig. 12. Multi-angular fusion results from Huygens. After applying Huygens on fusion re-
sults from Leonardo-Fuse, sample information is furthered gathered together (white and yellow arrows).
However, misalignment exists (circle regions), as Huygens requires manual registration which is extremely
challenging in huge datasets.
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Supplementary Notes

Supplementary Note 1: Leonardo-DeStripe

1.1 Stripe remover regularized by anisotropic total variation

Before Leonardo-DeStripe, there were several useful stripe removers which treat the
destriping issue as an ill-posed inverse problem. The isotropic total variation (TV) regu-
larized split Bregman framework, which we mentioned in the Methods in the main text, is
one of the typical:

= arg[nin% ||)? — 15”2 + AR()?)
X
(1)
. ~ 2 ~ ~
= arg}(mn%”X = |15 + A {19, + 1V, (% = 1), }

where we follow all the definitions that we made in the main text. Since the energy function
on X is intractable, split Bregman is adopted to convert the unconstrained minimization
problem on X into a constrained one by introducing auxiliary variables G, = V,.X and Gy, =
v, X:

y

arg}(nin% 12 = L]12 + 2 {06l + (16, = VL]l } 5.6 = V%, 6, =V, 2)

Subsequently, by using the Bregman iteration to enforce the constraints weakly, Eq.
(2) can further be transformed into a non-constrained minimization:

[+ 208 = Ll + 2 {06 + 16y = vy}
argmin

- _ (3)
Ronty |+201G, — V% ~ B +£]G, — 9,8 - B, |

here, the minimizations of Eq. (3) with respect to X, G, and G, can be decoupled, and
thus, they can be further converted into three separate sub-minimization problems:

® the G,-related subproblem:

argmin {ﬂ{”Gx”l} +% | Gx = VX — B ”z} @
G
® the G, -related subproblem:
. 8 - ]|
argmin {26, ~ 7,11, +£ |6, = 7,2 5"} ®

where the G,- and G, -related subproblems can be solved as in Eq. (6) in the main text
by using shrinkage operator.

® the X-related subproblem:
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arg}(nin {% |X - IS||2 +% |

¢ _y X — g ||2 +£ ||Gy("“) - v, X - B® ”3 (6)

which is a least-square problem equivalent to:
(I +aViv, + BVIV, )X = s + aVI(GF™ — BY) + BV (GE* — BY) (7)

which can be solved by using fast Fourier transform efficiently as in Eq. (6) in the
main text.

Additionally, the Bregman variables, B,Ek) and BJ(,") can be updated correspondingly:

k+1 k 2 k+1
BIHD = B 4 (7,040 — D)

(8)
(k+1) _ p(®) ; (k+1)
BY™Y = B + (v, X0+D — D)

We additionally visualize the aforementioned split Bregman during the first iteration
as Figure SN 1.1. It is clear to see that the deep learning architecture in Leonardo-
DeStripe (Extended Data Fig. 2) mimics the first iteration in split Bregman optimization,
which encourages the interpretability of Leonardo-DeStripe. The only difference is that
Leonardo-DeStripe, empowered by the DC branch, is able to ignore X, i.e., the stripe-
corrupted I;, when composing X(™, thus only require one-iteration learning when remov-
ing the stripes.

Subtract
from

v, % 4+ g® T

v - x ’ \v4

—» shrink( A . AE:
a

I+aViv,

=F )
N\ ( +3V3T7vy
L

e

ok k

—> shrink A + VI

g Subtract
‘ from

Figure SN 1.1. First iteration of a split Bregman framework regularized with anisotropic total varia-
tion.
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1.2 Improvement of Leonardo-DeStripe from Bayesian perspective

When analyzing the aforementioned split Bregman framework when being suboptimal in
stripe removal, we start by examining Eq. (1) from a Bayesian perspective. Specifically,
as restoring a stripe-less X out of the degradation I; is ill-posed, Eq. (1) originates from
the following Maximum A Posteriori (MAP) estimation problem:

X = argmax{log(p(Is1X)) + log(» (X))}

9
X = arg}r{nin {LIIIS —X|I? + R(X)} ®)

202

where log(p(I5|X)) is the log-likelihood of observing X given X, log-prior log(p(X)) deliv-
ers the prior of stripe-less X and is independent of degraded I;. Moreover, by assuming
pixel-independent Gaussian noise, log(p(ISIX)) encourages data fidelity between predic-
tion X and input I;, whereas log(p(X)) becomes anisotropic TV prior R(X). In the other
word, trade-off parameter 1 in Eq. (1) is equivalent to 202, that is the standard deviation
of the Gaussian distribution we primarily impose on the noise. However, the assumed
Gaussian distribution does not hold for noises in stripe removal task, as I — X represents
the pixel-dependent and non-zero-mean stripe noise. To correct this, % I, — X]|?, or o,
should be pixel-variant, which in practice is intractable. Thus, in Leonardo-DeStripe im-
plicitly replaces the — ||I, — X||? by:

202

® solving the G,-related subproblem using a GNN, where the wedge-shaped mask
draws the attention of the stripe resolver to a wedge-shaped region in Fourier per-

pendicular to the stripe orientation. Conceptionally, threshold % = % in the shrinkage

operator is now spatial-variant with an attention focusing on the stripe-related pixels
only.

® composing the stripe-less X based on only G, and G,. Hence, ﬁ I, — X||? it totally

ignored in the X-related subproblem.

1.3 Guided filtering with various parameters

In Leonardo-DeStripe, guided filtering (GF) has been used multiple times with different
setting of size of the window w, and penalization parameter e. Here, on a murine heart
specimen (Fig. 2E in the main text), we vary w;, and €, with the striping image serving as
both filter input and guidance image, to see the effect. In Figure SN 1.2, from left to right,
image details of filter output get removed as penalization parameter € getting larger, which
is consistent to the previous findings'. Moreover, due to the directionality of the stripes,
wy, either along column or row, empowers GF with different properties. Specifically, w;
against the stripes, termed column-wise GF in Figure SN 1.2, is able to remove the
stripes by using larger €, although fine details in the murine heart will be oversmoothed
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as well. In comparison, row-wise GF, which operates along the stripes, will not remove
the stripes even with € = 10, which, on the other hand, indicates the learnt a;, and b, be-
ing window-based constant, and hence, sample signals will be reserved at most after row-
wise GF. This explains why:

® the GF used by Leonardo-DeStripe to refine stripe-less output X of the deep learning
should be row-wise and with small ¢, so as to preserve sample information as much
as possible.

® the GF used by Leonardo-DeStripe in the GF-based similarity loss term should be
column-wise and with large ¢, in order to encourage the similarity between learnt
stripe-less X and striping I, after stripes and/or sample details being removed.

Filter input (also guidance image)

Column-wise GF
(Wk c R49 1)

row-wise GF
(WA = Rl 4))

Figure SN 1.2. Column-wise and row-wise GFs with various w, and ¢.

1.4 Leonardo-DeStripe is rotatable for stripes with arbitrary directions

Beyond removing horizontal stripes, Leonardo-DeStripe is extensible to resolve stripes
with arbitrary angular orientation, as all operations inside are rotatable. Specifically, there
are four operators in the Leonardo-DeStripe that need to be rotated when meeting stripes
along angle of 4 (in radius) (Extended Data Fig. 2 in the main text):

® the wedge-shaped mask. The orientation of the mask is correspondingly rotated as
0+m/2.

Liu et al. 2024 Leonardo 18



® first-order derivative operators including V,, V,,, V7, and V. In practice, when the ori-

entation of the stripes is along either horizontal or vertical, we use the total variation
operator to extract first-order derivative:

V.= [_11] v,=[-11] (10)

whose Fourier projection is given in Figure SN 1.3A. Since it's not rotatable, we,
instead, use to following alternatives to extract first-order derivative along horizontal
and vertical:

0.3678 0 —-0.3678 0.3678 0.6065 0.3678

V,=10.6065 0 —0.6065 0 0 0 (11)
0.3678 0 —0.3678 —0.3678 —0.6065 —0.3678

whose Fourier projection is given in Figure SN 1.3B. Hence, the derivatives along or
against the stripes can be calculated using the following operators, respectively:

V,= cos(—=0m)V, + sin(—-6m)V,,

V,= cos (—Gn + %) V, + sin (—Gn + g) v,

, Vy=

(12)

where V, and V, denotes the derivative operator for the direction against or along the
stirpes, respectively. The Fourier response of V, and V, when 6 = /4 are given in
Figure SN 1.3C. Hence, V, and V,,, which are used by the original Leonardo-
DeStripe, are to be replaced by V, and V,, respectively. V%, and VZ can be replaced
by the inverse of V, and V|, correspondingly.

® second-order derivative operators including V,,, V., and V,,,. When facing stripes
along vertical or horizonal, V,,, V,, and V,,,,, which are to calculate the second-order
derivative of the input images, are defined as Gaussian Hessian kernel:

22 x2+4y2
V.= ex (— )
xx 2mo3 p 202
2.44,2
xy x2+y
V = ex (— ) 13
XY 2mgb p 202 ( )
V _ y2_0.2 ( x2+y2)
YY" 2pg3 202

where ¢ is the stand deviation of the Gaussian distribution and can be manually set
by the users (1 by default). When digitizing, the kernel size is 2 X ceil(60) + 1 with
ceil(-) being the ceiling of the input. The Fourier response of Hessian operators when
o = 1is given in Figure SN 1.4A. When stripes are along degree 6, Hessian opera-
tors are rotated correspondingly:

V, = centerRotate(V,,, 8)
V= centerRotate(V,,, 6) (14)

V)= centerRotate(V,,,, 8)
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where centerRotate(X, ) is to rotate matrix X 6 degree with the origin of the rotation
being [ceil(60), ceil(60)]. The Fourier response of Hessian operators V, ,, V,,, and
Viywheno =1and 8 =m/3is given in Figure SN 1.4B.

® window wy, in GFs. the original w;, used by row-wise and column-wise GFs, respec-
tively, are given in Figure SN 1.5A. with dealing with stripes oriented 6, w;, should be
rotated to be along the stripes, i.e., 8, for row-wise AGF when refining the output of
the neural network. In comparison, the column-wise GF used in the GF-based simi-
larity loss term should be rotated so as to against the stripes, that is 8 + n/2. The
rotation of the window is implemented with ndimage. rotate function provided by
Scipy package in Python. w; used to resolve stripes with 8 = /3 are displayed in
Figure SN 1.5B.

0=0 0 =m/4

A horizontal/vertical derivative B horizontal/vertical derivative

Stripe animation Vi v V, \% Stripe animation

C first-order derivative
V,

Figure SN 1.3. Fourier response of various derivative operators used by Leonardo-DeStripe in differ-
ent scenarios.
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AQ=0 BO =n/3

Stripe animation Stripe animation

Figure SN 1.4. Fourier response of Hessian operators used by Leonardo-DeStripe in different sce-

narios.
Stripe animation
Row-wise wy, Column-wise wy,
[} -
Il
>
32
~
B
Il
[n) |

Figure SN 1.5. w, varies with resolving stripes with different orientations.

Supplementary Note 2: Simulation of striping objects

To quantitatively evaluate the performance of Leonardo-DeStripe, we use the stripe-less
stack of the murine heart specimen processed via Leonardo-DeStripe (Fig. 2E in the main
text) as ground truth and simulate stripe-shape shadows on it (Supplementary Fig. 2).
Specifically, structured noise can be randomly generated for every slice of the input stack
independently. Here we suppose the illumination lens is on the lefthand side. Thus, the
structured noise is assumed to be consistent along every row, whose intensity should be
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within a range of [0,1] to mimic the absorption of the illumination light. To mimic the spar-
sity of the absorbing obstacles, the structured noise is randomly sampled from a normal
Gaussian distribution with intensities lower than 0.5 reset as 1, i.e., not affected by stripes.
Finally, the stripes are blurred using a 2D Gaussian filter with a sigma of 5. The stripe-
corrupted SPIM stack can be finally generated by element-wisely multiplying the input
stack with the simulated stripes.

Supplementary Note 3: Simulation of SPIM datasets with se-
quential dual-sided illumination

To quantify the performance of Leonardo-Fuse, specifically -illu branch, in restoring high-
quality image stack by fusing the two SPIM datasets illuminated via opposite lenses, we
simulate two partially degraded out of a previously published PEGASOS cleared mouse
brain labeled with THY1-eGFP (472x512x512 voxels)?. Since the specimen has been
well-cleared in advance, it can be treated as an almost optimal ground truth (GT), that is,
image quality is uniformly good as the light sheet penetrating the mouse brain. First, we
create a series of pseudo- fusion boundaries

Wiy = 64(cos(lzv—nx—n)cos(lzv—:Z—n)+1)+256 (15)

X

where 0T means the ground truth fusion boundaries that we simulate, x € {1,2,--, N, },
z€{1,2,-,N,}, for this mouse brain specimen, N, =512, N, =472. Thus, wiT €
[192,320] lying in the middle of the z-th slice, is the simulated fusion boundary for the z-
th slice. Next, suppose the illumination lens is placed on the lefthand side, we define the
part of image on the left side of wST to be unaffected by aberrations, whereas the opposite
part is gradually degraded by light scattering along the illumination direction:

OIeft _ {&z,x,ypz,x,y + (1 - 6~(z,x,y)Qz,x,y: ify > ng

= . 16
2V | Py otherwise (16)

where @,,, = Fzxy /max Uyry is the weighting parameter at the (z, x,y) position with
y

ly-wft

Azxy =€ 5|"’Y“‘)g§|, O is the simulation result with righthand side degraded as a weighted
combination of input sharp volume P and a degraded @ obtained by uniformly blurring P
using a 3D Gaussian kernel (sigma of 50). Since @ monotonically decrease along the
illumination direction, i.e., y-axis, O is simulated to be more affected by the light scattering,
i.e., getting blurry, as the illumination light getting deeper into the specimen. Partially de-

graded 0]'9"

z,X,y

strategy using Eq. (16), with degradation only happens when y < wS%. As a result, the

with the illumination lens on the righthand side can be simulated with similar

obtained OZlexf; and OZr_icg,;}t mimic the mouse brain tissue being sequentially illuminated
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from the lefthand and righthand sides, respectively. During simulation experiments, re-
sults from various fusion algorithms can be quantitatively compared to the ground truth P
(Extended Data Fig. 8 in the main text). Additionally, the fusion boundary learnt by Leo-
nardo-Fuse (along illumination) can also be compared to the pseudo- fusion boundary

wOT.

Supplementary Note 4: Information content assessment

Information content assessment is performed using a combination of discrete cosine
transform (DCT-II) and Shannon entropy to measure image quality®. Image patches I €
RM*N are firstly transformed into the cosine frequency domain:

2 - - . . . . P
Face (W) = 2 BMG SN2 6(D)8()cos |3 (21 + 1) cos [T+ (2) + )] 160,
L ifr= (17)
where 8(t) = {ﬁ ift=0
1 otherwise
where F,., € RM*VN js the discrete cosine transform of the patch I. Next, the spectral en-

tropy is used to calculate the information content of the patch I:

n

Sshannon = — Li=1 Z?:l pi,jln D j (18)

i p . _ Face@))?
ijPi Y (MxN)??

where p; ; = Sshannon 1S the Shannon entropy of the transformed im-

age.

Supplementary Note 5: SPIM registration

It is fundamentally crucial for fusing SPIM datasets to perform on well-registered SPIM
pairs®. In most commercial/scientific light sheet-based setups, for example dual-sided il-
lumination lenses in SPIM and Blaze and dual-sided detection lenses in X-SPIM, lenses
have been well-aligned in advance. Hence, in Leonardo, there is only one scenario re-
quiring registration by the algorithm, that is when opposite detection lenses are mimicked
by rotating the specimen 180°. However, since in different input image stacks, only a
complementary part of the specimen can be well-imaged in detail (Fig. 1B), registration
in SPIM datasets is extremely challenging. Hence, we recommend users of Leonardo-
Fuse to manually register the input stacks in advance, or consider bead-based registra-
tion plugins® which require embedding fluorescent beads in the mounting medium around
the specimen in advance. Nevertheless, in Leonardo-Fuse, we optimize a 3D image-
based registration workflow in ANTsPy® which can be useful when pre-registration is not
available. Specifically, in order to ensure as much overlap of usable information of the
specimen as possible, registration is estimated based on fusion result from Leonardo-
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Fuse (along illumination) and then applied to both image stacks captured via back detec-
tion lens. Otherwise, for light sheet setups where dual-sided illumination is performed
simultaneously, e.g., Blaze, registration is estimated on the input stacks directly. An illus-
tration of the entire workflow of Leonardo-Fuse when registration in-between is required
is given in Supplementary Fig. 6.

Registration in Leonardo includes three steps in total. Given the two fusion results,
one XP by fusing two stacks with dual-sided illumination and front detection and the
other XBP by fusing volumes with dual-sided illumination and back detection, Leonardo
firstly translates X5P to the same space as XFP. To fasten the optimization, this translation
transformation is learnt based on maximum intensity projection (MIP) in 2D. Specifically,
the translation steps along z-axis, namely t,, and x-axis, termed t,,, are firstly learnt based
on MIP of X¥P and XBP along y-axis:

1 0 0 ¢t
_10 1 0 ¢t
hi=lo 01 0 (19)
0 0 0 1
whereas the translation step along y-axis, termed ¢, is learnt based on MIP of X*” and

X£P mapped via T; along z-axis:

T, = (20)
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as a result, X?? is mapped as X2, , which is in the same space as X*? via T, X T;.

Next, a Rigid transformation is learnt as fine registration, which includes rotation and
translation in 3D simultaneously. As one of the most state-of-the-art toolkits for image
registration, ANTsPy houses top-performing algorithms used worldwide by scientific com-
munities for registering biological or medical imaging data. Nevertheless, one of the major
drawbacks of ANTsPy is being computationally expensive, especially when processing
light sheet-based datasets up to Terabyte scale. Thus, 3D Rigid registration between X*P
and Xﬂf’Tz is estimated under 8-bit unsigned integer. Moreover, the registration is esti-
mated within a bounding box. The expansion of the bounding box in xy is defined by
segmenting the MIP of XfP and Xﬁ’?Tz along z-axis. Meanwhile, its expansion along z is
determined such that the bounding box includes no more than 200 x 1024 x 1024 pixels,
tested on 50 GB system random-access memory (RAM), in total in 3D. Additionally, in
case of system RAM smaller than our testing setup, we allow users to define down-sam-
ple ratios, axial upsample and lateral upsample for xy and z, respectively, for
registration. As a result, X7”. is mapped as X77. ;. after registration using the learnt
transformation matrix T; in a format of:
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Finally, in case of the aforementioned Rigid transformation learnt in a down-sampled
space, a descriptor-based Affine registration is learnt under the original resolution. Spe-
cifically, the affine transformation is estimated based on anchor points extracted using 2D
Difference of Gaussian (DoG) method for the sake of memory efficiency. The extracted
descriptors are then registered using Iterative Closest Point (ICP) registration algorithm?,
which is implemented using Open3D package in Python.

(21)

Overall, registration in Leonardo includes three rounds, that is translation in 2D, Rigid
in 3D (potentially down-sampled) and Affine transformation in 3D and full-resolution, from
coarse to fine. In addition, lateral and axial resolutions of the input stacks are required by
all three rounds of registration.

Supplementary Note 6: Optimized Leonardo-Fuse for large
tissue

As a GPU-aided post-processing tool, Leonardo-Fuse requires a decent number of com-
putational resources. Moreover, if registration is needed, sufficient system RAM is crucial
(as previously mentioned, ANTsPy, the registration toolbox we use, is computationally
demanding). Therefore, when processing extremely large specimens, a specialized ver-
sion of Leonardo-Fuse has been optimized, as illustrated in Extended Data Fig. 10A in
the main text. In this version, the input volumes are firstly downsampled, where the sam-
pling ratio can be defined by users based on the capabilities of their computing machine.
Especially, this downsampling does not significantly affect the accuracy of the estimated
fusion boundary, owing to the continuity of biological specimens. In comparison, the reg-
istration matrix learnt in the downsampled space, if estimated, may be less accurate.
Therefore, the learned registration matrix is to be refined at full resolution. Considering
the significant computational burden of image-based registration, this refinement is real-
ized using only the final round of descriptor-based Affine registration which is described
in the previous Supplementary Note 5. As a result, given the registered front-back input
pair, Leonardo-Fuse can fuse them based on the upsampled fusion boundary. This fol-
lows the same strategy to refine the fusion boundary based on GF, as described in Meth-
ods in the main text.

Supplementary Note 7: Leonardo-DeStripe-Fuse

Given the fusion boundary along illumination, which is pre-estimated on the stripe-cor-
rupted data, and two input slices with opposing orientations, the integration of Leonardo-
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DeStripe-Fuse aims to simultaneously remove stripes in both inputs. In this process, Le-
onardo-DeStripe focuses exclusively on destriping regions that will be incorporated into
the final fusion result. Specifically, within the deep learning-parameterized ADMM frame-
work (illustrated in Extended Data Fig. 2C in the main text), the two input slices (in the
Fourier domain) are first mapped to a high-dimensional feature space using the same
MLP® which has been discussed in Methods in the main text. In comparison, the subse-
quent anisotropic TV unit is not shared between the two opposing orientations. Instead,
two separate groups of anisotropic TV units are deployed for each input in parallel. Each
group may consist of multiple anisotropic TV units, with each unit dedicated to resolving
stripes in one specific orientation. Thus, Leonardo-DeStripe-Fuse can be easily extended
to multi-directional light sheet-based systems (e.g., UltraMicroscope Blaze). The learned
feature maps from both inputs are then projected back to one-dimensional space using
the same MLPC. Meanwhile, two DC branches work in parallel to infer the baseline com-
ponent for each input after stripe correction. The two outputs of the network, denoted as
X, and X,, are finally projected back to the image space using inverse FFT, and later
fused into X (following definitions used in Methods in the main text) using the same strat-
egy as Leonardo-Fuse (along illumination). The remaining parts, together with the training
process, of the network follow the same strategy as Leonardo-DeStripe. The only differ-
ence is that when composing full-resolution stripe-less result using AGF, AGF is applied
twice separately to X, and X,, with the outputs fused again based on the fusion boundary.
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