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Extended Data Fig. 1. Graphical user Interface (GUI). Leonardo is modular and capsulized individually
in Napari and can adapt to different SPIM variants and workflows. Specifically, Leonardo-DeStripe and
Leonardo-Fuse are nested in two Napari widgets separately.
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Extended Data Fig. 2. Architecture of Leonardo-DeStripe. (A) Overall, Leonardo-DeStripe treats stripe
removal task in SPIM as mapping stripe-corrupted input to stripe-free output via a local linear transformation,
supported by the observation that stripes are considered locally consistent along illumination direction. (B)
The guidance map used by the local linear transformation, which can be low-resolution and even detail
compromised, is learned via a deep learning neural network (NN) in log space after Fourier transformation,
where multiplicative stripes are converted into additive noise and thus easier to be modeled. (C) Proposed
NN follows a split Bregman framework regularized via anisotropic total variation (TV) in latent feature space.
Specifically, a graph neural network in (D) is nested, in which stripe-corrupted Fourier coefficients are in-
painted as a combination of their neighbors on a polar coordinate system.
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SPIM

Leonardo-DeStripe

Leonardo-DeDtripe Leonardo-DeDtripe w/o GF Leonardo-DeDtripe w/o AGF

Extended Data Fig. 3.The effect of guided upsampling in Leonardo-DeStripe. (A) Stripes are visible in
Xy maximum projection, whereas after Leonardo-DeStripe, they are very much resolved. (B) Four typical
slices are displayed, where Leonardo-DeStripe resolves diverse stripes successfully. (C) The output of
GNN in Leonardo-DeStripe is suitable to serve as guidance map in a color transformation model, although
sample details in it may be underscored (Leonardo-DeStripe w/o GF panel). Our modified guided upsam-
pling (termed LGF) works significantly better than conventional guided filtering (Leonardo-DeStripe w/o
AGF panel), with stripes being better compressed. Scale bars: 100 um (A, B, first row in C), 50 um (last two
rows in C).
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Extended Data Fig. 4. Simulation results on an adipose tissue. (A) Leonardo-DeStripe’ result resembles
ground-truth visually, whereas MDSR merges thin stripes into thick ones rather than removing them. (B)
Leonardo-DeStripe outperforms benchmarking methods in both PSNR and SSIM. Scale bars: 400 um (A).
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Extended Data Fig. 5. Architecture of Leonardo-Fuse (along illumination). (A) In parallel, Leonardo-
Fuse (along illumination) segments sample-related pixels, and meanwhile, quantifies pixel-level image
qualities using non-subsampled contourlet transform (NSCT). The used mask to estimate photon propa-
gating path is therefore integrated as regions between left and right boundaries extracted from left seg. and
right seg., respectively. Only sample-related saliency levels are then fed into an expectation-maximization
algorithm to estimate the fusion boundary, where the smoothness of the fusion boundary, together with the
quality of the fused result, are considered alternatively. Before stitching the two SPIM inputs based on the
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fusion boundary, Leonardo-Fuse (along illumination) additionally refine the fusion boundary using guided
filtering (GF) to ensure smooth transitions near the fusion boundary while maintain distinct selections from
each stack in areas farther away. The process of refining the fusion boundary using GF is explained in
detail in (B).
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Extended Data Fig. 6. Ablation studies of Leonardo-Fuse (along illumination). (A) Result from Leo-
nardo-Fuse (along illumination) on a H2B-GFP-labeled transgenic zebrafish is given, together with the es-
timated fusion boundary at various depth plotted on the right. (B) The consideration of prior knowledge of
light travel path (enabled by the tissue segmentation) helps Leonardo-Fuse (along illumination) to better
reject ghost artifacts (white arrows in Leonardo-Fuse w/o seg. panel). Meanwhile, the guided filtering (GF)-
based fusion boundary refinement in (C) allows us to seamlessly stitch multiple datasets without creating
artifacts (white arrows in Leonardo-Fuse w/o GF panel). (D) Information is integrated by using both baseline
methods and ours. However, we line plot a segment in (E), where only Leonardo-Fuse (along illumination)
allows the best data fidelity (perfectly overlap with Left ill.). Scale bars: 100 um (A), 50 um (B-D).
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Extended Data Fig. 7. Leonardo-Fuse (along illumination) facilitates downstream segmentation task.
(A) Leonardo-Fuse (along illumination) result on calcium imaging specimen is shown, together with the
estimated fusion boundary. Two zoom-in regions are given in (B) and (C), where benchmarking methods,
especicially MST-SR, suffer from halo artifacts (white arrows in (C)). (D) Therefore, when counting cell
numbers using Cellpose, only Leonardo-Fuse (along illumination) gives exact same result and thus the best
data fidelity as input with illumination source placed on the right. In comparison, baseline approaches fail
to detect several cells (white and yellow arrows for BigStitcher-Fuse and MST-SR, respectively). Scale bars:
100 pm (A), 50 um (B, C), 25 um (D).
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Extended Data Fig. 8. Leonardo-Fuse (along illumination) quantitatively outperforms benchmarking
methods. (A) Degradation along illumination is simulated on a previously published PEGASOS-cleared
mouse brain. (B) Leonardo-Fuse (along illumination) successfully learns the fusion boundary, very much
resemble the ground truth (GT) one. (C) A line plot of a segment (indicated as yellow line in (A)) is given,
where only Leonardo-Fuse (along illumination) preserves data fidelity (perfectly overlap with left ill.). (D)
Leonardo-Fuse (along illumination) outperforms both benchmarking methods in terms of both PSNR and
SSIM. Scale bars: 100 um (A).
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Extended Data Fig. 9 Architecture of Leonardo-Fuse (along detection). (A) Leonardo-Fuse (along de-

tection) reuses the estimation of fusion boundary four times, two of which along illumination direction and
the others along detection direction. Since these four “good”-to-“bad” quality boundaries are estimated in-
dependently, they need to be merged into one before fed into fusion boundary refinement module and used
as guidance for dataset stitching. Decision merge includes two scenarios: (B1) when same region is cov-
ered twice and (B2) when a patch is not considered as “good” by any datasets.
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Extended Data Fig. 10. Leonardo-Fuse performs fusion on extremely large specimen using man-
ageable computational requirement. (A) Leonardo-Fuse can be optimized to fuse extremely large tissue
by estimating the fusion boundary, together with the transformation matrix, in a down-sampled space, and
later refining the registration matrix under original resolution, and applying stitching-based fusion technique
in high-resolution. (B) Leonardo-Fuse gradually transfers attention from front volume to back stack as get-
ting deeper into the tissue. Scale bars: 500 um.

Liu et al. 2024 Leonardo 14



