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Supplementary Figures 
 

 
Supplementary Fig. 1. A comparison between Leonardo-DeStripe and conventional 2D band-pass FFT 
filter with different angular coverages of the wedge-shaped mask. From left to right, the angular coverage 
of the masking region in the FFT filter increases from ±9° to ±29°. Note that the GNN in Leonardo-DeStripe 
is operated after downsampling (ratio of 3). 
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Supplementary Fig. 2. Simulation of striping SPIM. Adipose tissue is used as a stripe-free ground truth 
image. Structured noise is simulated to mimic horizontal and multiplicative stripes. 
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Supplementary Fig. 3. Stripe removal results on zebrafish brain dataset. Leonardo-DeStripe successfully 
removes the thick stripes without dampening the Fourier projection, compared to the residual stripes from 
MDSR. 
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Supplementary Fig. 4. Stripe removal result using Leonardo-DeStripe on a zebrafish brain dataset. The 
stripes in the input dataset, which are originally horizontal (Fig. 2F in the main text). We manually rotate the 
stack 45° to test the extensibility of Leonardo-DeStripe. 
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Supplementary Fig. 5. Simulation of two partially degraded SPIM volumes. Deteriorated stacks are simu-
lated to become more degraded as they get farther from the illumination sources. 
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Supplementary Fig. 6. An illustration of registration workflow in Leonardo which is based on ANTsPy (ants). 
From coarse to fine, Leonardo registers input datasets using their maximum intensity projections (along y 
axis, i.e., yMIP or along z axis, i.e., zMIP), 3D downsampled and cropped volume stacks (BoundingBox), 
and extracted point anchors at full resolution, from step to step. 
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Supplementary Fig. 7. Registration performance from coarse to fine. The stack acquired using camera in 
the back is gradually aligned with the volume captured with camera in the front (white and orange arrows 
in the 3D overlay and white arrows in 2D overlay at a depth of 596 µm). 
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Supplementary Fig. 8. The whole Leonardo-Fuse workflow when registration is required on a H2B-GFP 
labeled transgenic zebrafish. Leonardo-Fuse (along illumination) is first performed twice for stacks with 
different detection cameras independently. Registration is then optimized based on fusion result along illu-
mination. Using registered stacks, Leonardo-Fuse (along detection) is realized as final step.   
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Supplementary Fig. 9. Normal Leonardo workflow, where DeStripe module is performed on individual 
dataset separately. Fuse module is then used for dataset integration, which is able to not only fuse stack 
to maximize optical coverage but also resolve remaining extremely thick and dark stripes after DeStripe 
(white arrows). 
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Supplementary Fig. 10. Workflow of Leonardo-DeStripe-Fuse. Compared to the normal workflow in which 
Leonardo-DeStripe is performed multiple times on datasets with opposite illumination orientations inde-
pendently, this fusion-first approach improves computational efficiency, as Leonardo-DeStripe is performed 
only once. 
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Supplementary Fig. 11. Deconvolution results from foundation model UniFMIR, one of the most recent 
universal fluorescence microscopy-based image restoration models to address different restoration prob-
lems. It can be applied to enhance resolution (yellow arrow) right after Leonardo-Fuse removing all blurry 
regions (white arrow). 
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Supplementary Fig. 12. Multi-angular fusion results from Huygens. After applying Huygens on fusion re-
sults from Leonardo-Fuse, sample information is furthered gathered together (white and yellow arrows). 
However, misalignment exists (circle regions), as Huygens requires manual registration which is extremely 
challenging in huge datasets. 
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Supplementary Notes 

Supplementary Note 1: Leonardo-DeStripe 

1.1 Stripe remover regularized by anisotropic total variation 
Before Leonardo-DeStripe, there were several useful stripe removers which treat the 
destriping issue as an ill-posed inverse problem. The isotropic total variation (TV) regu-
larized split Bregman framework, which we mentioned in the Methods in the main text, is 
one of the typical: 

 
⟺ argmin

𝑋𝑋�

1
2
�𝑋𝑋� − 𝐼𝐼𝑠𝑠�2

2 + 𝜆𝜆R�𝑋𝑋��

⟺ argmin
𝑋𝑋�

1
2
�𝑋𝑋� − 𝐼𝐼𝑠𝑠�2

2 + 𝜆𝜆 ��∇𝑥𝑥𝑋𝑋��1 + �∇𝑦𝑦�𝑋𝑋� − 𝐼𝐼𝑠𝑠��1�
 (1) 

where we follow all the definitions that we made in the main text. Since the energy function 
on 𝑋𝑋� is intractable, split Bregman is adopted to convert the unconstrained minimization 
problem on 𝑋𝑋� into a constrained one by introducing auxiliary variables 𝐺𝐺𝑥𝑥 = ∇𝑥𝑥𝑋𝑋� and 𝐺𝐺𝑦𝑦 =
∇𝑦𝑦𝑋𝑋�: 

 argmin
𝑋𝑋�

1
2
�𝑋𝑋� − 𝐼𝐼𝑠𝑠�2

2 + 𝜆𝜆 �‖𝐺𝐺𝑥𝑥‖1 + �𝐺𝐺𝑦𝑦 − ∇𝑦𝑦𝐼𝐼𝑠𝑠�1�  𝑠𝑠. 𝑡𝑡.𝐺𝐺𝑥𝑥 = ∇𝑥𝑥𝑋𝑋� ,𝐺𝐺𝑦𝑦 = ∇𝑦𝑦𝑋𝑋�  (2) 

Subsequently, by using the Bregman iteration to enforce the constraints weakly, Eq. 
(2) can further be transformed into a non-constrained minimization: 

 argmin
𝑋𝑋� ,𝐺𝐺𝑥𝑥,𝐺𝐺𝑦𝑦

�
+ 1

2
�𝑋𝑋� − 𝐼𝐼𝑠𝑠�2

2 + 𝜆𝜆 �‖𝐺𝐺𝑥𝑥‖1 + �𝐺𝐺𝑦𝑦 − ∇𝑦𝑦𝐼𝐼𝑠𝑠�1�

+ 𝛼𝛼
2
�𝐺𝐺𝑥𝑥 − ∇𝑥𝑥𝑋𝑋� − 𝐵𝐵𝑥𝑥�2

2 + 𝛽𝛽
2
�𝐺𝐺𝑦𝑦 − ∇𝑦𝑦𝑋𝑋� − 𝐵𝐵𝑦𝑦�2

2�  (3) 

here, the minimizations of Eq. (3) with respect to 𝑋𝑋�, 𝐺𝐺𝑥𝑥 and 𝐺𝐺𝑦𝑦 can be decoupled, and 
thus, they can be further converted into three separate sub-minimization problems: 

 the 𝐺𝐺𝑥𝑥-related subproblem: 

 argmin
𝐺𝐺𝑥𝑥

�𝜆𝜆{‖𝐺𝐺𝑥𝑥‖1} + 𝛼𝛼
2
�𝐺𝐺𝑥𝑥 − ∇𝑥𝑥𝑋𝑋� (𝑘𝑘) − 𝐵𝐵𝑥𝑥

(𝑘𝑘)�
2

2
� (4) 

 the 𝐺𝐺𝑦𝑦-related subproblem: 

 argmin
𝐺𝐺𝑦𝑦

�𝜆𝜆�𝐺𝐺𝑦𝑦 − ∇𝑦𝑦𝐼𝐼𝑠𝑠�1 + 𝛽𝛽
2
�𝐺𝐺𝑦𝑦 − ∇𝑦𝑦𝑋𝑋� (𝑘𝑘) − 𝐵𝐵𝑦𝑦

(𝑘𝑘)�
2

2
� (5) 

where the 𝐺𝐺𝑥𝑥- and  𝐺𝐺𝑦𝑦-related subproblems can be solved as in Eq. (6) in the main text 
by using shrinkage operator. 

 the 𝑋𝑋�-related subproblem: 
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 argmin
𝑋𝑋�

�1
2
�𝑋𝑋� − 𝐼𝐼𝑠𝑠�2

2 + 𝛼𝛼
2
�𝐺𝐺𝑥𝑥

(𝑘𝑘+1) − ∇𝑥𝑥𝑋𝑋� − 𝐵𝐵𝑥𝑥
(𝑘𝑘)�

2

2
+ 𝛽𝛽

2
�𝐺𝐺𝑦𝑦

(𝑘𝑘+1) − ∇𝑦𝑦𝑋𝑋� − 𝐵𝐵𝑦𝑦
(𝑘𝑘)�

2

2
� (6) 

which is a least-square problem equivalent to: 

 �𝐼𝐼 + 𝛼𝛼∇𝑥𝑥𝑇𝑇∇𝑥𝑥 + 𝛽𝛽∇𝑦𝑦𝑇𝑇∇𝑦𝑦�𝑋𝑋� = 𝐼𝐼𝑠𝑠 + 𝛼𝛼∇𝑥𝑥𝑇𝑇(𝐺𝐺𝑥𝑥𝑘𝑘+1 − 𝐵𝐵𝑥𝑥𝑘𝑘) + 𝛽𝛽∇𝑦𝑦𝑇𝑇�𝐺𝐺𝑦𝑦𝑘𝑘+1 − 𝐵𝐵𝑦𝑦𝑘𝑘�  (7) 

which can be solved by using fast Fourier transform efficiently as in Eq. (6) in the 
main text. 

Additionally, the Bregman variables, 𝐵𝐵𝑥𝑥
(𝑘𝑘) and 𝐵𝐵𝑦𝑦

(𝑘𝑘) can be updated correspondingly: 

 �
𝐵𝐵𝑥𝑥

(𝑘𝑘+1) = 𝐵𝐵𝑥𝑥
(𝑘𝑘) + �∇𝑥𝑥𝑋𝑋� (𝑘𝑘+1) − 𝐺𝐺𝑥𝑥

(𝑘𝑘+1)�

𝐵𝐵𝑦𝑦
(𝑘𝑘+1) = 𝐵𝐵𝑦𝑦

(𝑘𝑘) + �∇𝑦𝑦𝑋𝑋� (𝑘𝑘+1) − 𝐺𝐺𝑦𝑦
(𝑘𝑘+1)�

 (8) 

We additionally visualize the aforementioned split Bregman during the first iteration 
as Figure SN 1.1. It is clear to see that the deep learning architecture in Leonardo-
DeStripe (Extended Data Fig. 2) mimics the first iteration in split Bregman optimization, 
which encourages the interpretability of Leonardo-DeStripe. The only difference is that 
Leonardo-DeStripe, empowered by the DC branch, is able to ignore 𝑋𝑋� (0), i.e., the stripe-
corrupted 𝐼𝐼𝑠𝑠, when composing 𝑋𝑋� (1), thus only require one-iteration learning when remov-
ing the stripes. 

 

Figure SN 1.1. First iteration of a split Bregman framework regularized with anisotropic total varia-
tion. 
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1.2 Improvement of Leonardo-DeStripe from Bayesian perspective 
When analyzing the aforementioned split Bregman framework when being suboptimal in 
stripe removal, we start by examining Eq. (1) from a Bayesian perspective. Specifically, 
as restoring a stripe-less 𝑋𝑋� out of the degradation 𝐼𝐼𝑠𝑠 is ill-posed, Eq. (1) originates from 
the following Maximum A Posteriori (MAP) estimation problem: 

 
𝑋𝑋� = argmax

𝑋𝑋
�log�𝑝𝑝(𝐼𝐼𝑠𝑠|𝑋𝑋)� + log(𝑝𝑝(𝑋𝑋))�

𝑋𝑋� = argmin
𝑋𝑋

� 1
2𝜎𝜎2

‖𝐼𝐼𝑠𝑠 − 𝑋𝑋‖2 + R(𝑋𝑋)�
 (9) 

where log�𝑝𝑝(𝐼𝐼𝑠𝑠|𝑋𝑋)� is the log-likelihood of observing 𝑋𝑋 given 𝑋𝑋, log-prior log(𝑝𝑝(𝑋𝑋)) deliv-
ers the prior of stripe-less 𝑋𝑋 and is independent of degraded 𝐼𝐼𝑠𝑠. Moreover, by assuming 
pixel-independent Gaussian noise, log�𝑝𝑝(𝐼𝐼𝑠𝑠|𝑋𝑋)� encourages data fidelity between predic-
tion 𝑋𝑋 and input 𝐼𝐼𝑠𝑠, whereas log(𝑝𝑝(𝑋𝑋)) becomes anisotropic TV prior R(𝑋𝑋). In the other 
word, trade-off parameter 𝜆𝜆 in Eq. (1) is equivalent to 2𝜎𝜎2, that is the standard deviation 
of the Gaussian distribution we primarily impose on the noise. However, the assumed 
Gaussian distribution does not hold for noises in stripe removal task, as 𝐼𝐼𝑠𝑠 − 𝑋𝑋 represents 
the pixel-dependent and non-zero-mean stripe noise. To correct this, 1

2𝜎𝜎2
‖𝐼𝐼𝑠𝑠 − 𝑋𝑋‖2, or 𝜎𝜎, 

should be pixel-variant, which in practice is intractable. Thus, in Leonardo-DeStripe im-
plicitly replaces the 1

2𝜎𝜎2
‖𝐼𝐼𝑠𝑠 − 𝑋𝑋‖2 by: 

 solving the 𝐺𝐺𝑥𝑥 -related subproblem using a GNN, where the wedge-shaped mask 
draws the attention of the stripe resolver to a wedge-shaped region in Fourier per-

pendicular to the stripe orientation. Conceptionally, threshold 𝜆𝜆
𝛼𝛼

= 2𝜎𝜎2

𝛼𝛼
 in the shrinkage 

operator is now spatial-variant with an attention focusing on the stripe-related pixels 
only. 

 composing the stripe-less 𝑋𝑋� based on only 𝐺𝐺𝑥𝑥 and 𝐺𝐺𝑦𝑦. Hence, 1
2𝜎𝜎2

‖𝐼𝐼𝑠𝑠 − 𝑋𝑋‖2 it totally 
ignored in the 𝑋𝑋�-related subproblem. 

1.3 Guided filtering with various parameters 
In Leonardo-DeStripe, guided filtering (GF) has been used multiple times with different 
setting of size of the window 𝑤𝑤𝑘𝑘 and penalization parameter 𝜖𝜖. Here, on a murine heart 
specimen (Fig. 2E in the main text), we vary 𝑤𝑤𝑘𝑘 and 𝜖𝜖, with the striping image serving as 
both filter input and guidance image, to see the effect. In Figure SN 1.2, from left to right, 
image details of filter output get removed as penalization parameter 𝜖𝜖 getting larger, which 
is consistent to the previous findings1. Moreover, due to the directionality of the stripes, 
𝑤𝑤𝑘𝑘, either along column or row, empowers GF with different properties. Specifically, 𝑤𝑤𝑘𝑘 
against the stripes, termed column-wise GF in Figure SN 1.2, is able to remove the 
stripes by using larger 𝜖𝜖, although fine details in the murine heart will be oversmoothed 
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as well. In comparison, row-wise GF, which operates along the stripes, will not remove 
the stripes even with 𝜖𝜖 = 10, which, on the other hand, indicates the learnt 𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘 be-
ing window-based constant, and hence, sample signals will be reserved at most after row-
wise GF. This explains why: 

 the GF used by Leonardo-DeStripe to refine stripe-less output 𝑋𝑋� of the deep learning 
should be row-wise and with small 𝜀𝜀, so as to preserve sample information as much 
as possible. 

 the GF used by Leonardo-DeStripe in the GF-based similarity loss term should be 
column-wise and with large 𝜀𝜀, in order to encourage the similarity between learnt 
stripe-less 𝑋𝑋� and striping 𝐼𝐼𝑠𝑠 after stripes and/or sample details being removed.  

 

Figure SN 1.2. Column-wise and row-wise GFs with various 𝑤𝑤𝑘𝑘 and 𝜀𝜀. 

 

1.4 Leonardo-DeStripe is rotatable for stripes with arbitrary directions 
Beyond removing horizontal stripes, Leonardo-DeStripe is extensible to resolve stripes 
with arbitrary angular orientation, as all operations inside are rotatable. Specifically, there 
are four operators in the Leonardo-DeStripe that need to be rotated when meeting stripes 
along angle of 𝜃𝜃 (in radius) (Extended Data Fig. 2 in the main text): 

 the wedge-shaped mask. The orientation of the mask is correspondingly rotated as 
𝜃𝜃 + 𝜋𝜋/2. 



 

Liu et al. 2024 Leonardo 19 

 first-order derivative operators including ∇𝑥𝑥, ∇𝑦𝑦, ∇𝑥𝑥𝑇𝑇, and ∇𝑥𝑥𝑇𝑇. In practice, when the ori-
entation of the stripes is along either horizontal or vertical, we use the total variation 
operator to extract first-order derivative: 

 ∇𝑥𝑥= � 1
−1� , ∇𝑦𝑦= [−1,1] (10) 

whose Fourier projection is given in Figure SN 1.3A. Since it’s not rotatable, we, 
instead, use to following alternatives to extract first-order derivative along horizontal 
and vertical: 

 ∇𝑥𝑥= �
0.3678 0 −0.3678
0.6065 0 −0.6065
0.3678 0 −0.3678

� , ∇𝑦𝑦= �
0.3678 0.6065 0.3678

0 0 0
−0.3678 −0.6065 −0.3678

�  (11) 

whose Fourier projection is given in Figure SN 1.3B. Hence, the derivatives along or 
against the stripes can be calculated using the following operators, respectively: 

 
∇⊥= cos(−𝜃𝜃𝜃𝜃)∇𝑥𝑥 + sin(−𝜃𝜃𝜃𝜃)∇𝑦𝑦
∇∥= cos �−𝜃𝜃𝜃𝜃 + 𝜋𝜋

2
� ∇𝑥𝑥 + sin �−𝜃𝜃𝜃𝜃 + 𝜋𝜋

2
� ∇𝑦𝑦

 (12) 

where ∇⊥ and ∇∥ denotes the derivative operator for the direction against or along the 
stirpes, respectively. The Fourier response of ∇⊥ and ∇∥ when 𝜃𝜃 = 𝜋𝜋/4 are given in 
Figure SN 1.3C. Hence, ∇𝑥𝑥  and ∇𝑦𝑦 , which are used by the original Leonardo-
DeStripe, are to be replaced by ∇⊥ and ∇∥, respectively. ∇𝑥𝑥𝑇𝑇, and ∇𝑥𝑥𝑇𝑇 can be replaced 
by the inverse of ∇⊥ and ∇∥, correspondingly. 

 second-order derivative operators including ∇𝑥𝑥𝑥𝑥 , ∇𝑥𝑥𝑥𝑥 and ∇𝑦𝑦𝑦𝑦. When facing stripes 
along vertical or horizonal, ∇𝑥𝑥𝑥𝑥, ∇𝑥𝑥𝑥𝑥 and ∇𝑦𝑦𝑦𝑦, which are to calculate the second-order 
derivative of the input images, are defined as Gaussian Hessian kernel: 

 

∇𝑥𝑥𝑥𝑥= 𝑥𝑥2−𝜎𝜎2

2𝜋𝜋𝜎𝜎3
exp �− 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
�

∇𝑥𝑥𝑥𝑥= 𝑥𝑥𝑥𝑥
2𝜋𝜋𝜎𝜎6

exp �− 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
�

∇𝑦𝑦𝑦𝑦= 𝑦𝑦2−𝜎𝜎2

2𝜋𝜋𝜎𝜎3
exp �− 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
�

 (13) 

where 𝜎𝜎 is the stand deviation of the Gaussian distribution and can be manually set 
by the users (1 by default). When digitizing, the kernel size is 2 × ceil(6𝜎𝜎) + 1 with 
ceil(∙) being the ceiling of the input. The Fourier response of Hessian operators when 
𝜎𝜎 = 1 is given in Figure SN 1.4A. When stripes are along degree 𝜃𝜃, Hessian opera-
tors are rotated correspondingly: 

 
∇⊥⊥= centerRotate(∇𝑥𝑥𝑥𝑥,𝜃𝜃)
∇⊥∥= centerRotate(∇𝑥𝑥𝑥𝑥,𝜃𝜃)
∇∥∥= centerRotate(∇𝑦𝑦𝑦𝑦,𝜃𝜃)

 (14) 
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where centerRotate(𝑋𝑋,𝜃𝜃) is to rotate matrix 𝑋𝑋 𝜃𝜃 degree with the origin of the rotation 
being [ceil(6𝜎𝜎), ceil(6𝜎𝜎)]. The Fourier response of Hessian operators ∇⊥⊥, ∇⊥∥, and 
∇∥∥ when 𝜎𝜎 = 1 and 𝜃𝜃 = 𝜋𝜋/3 is given in Figure SN 1.4B. 

 window 𝑤𝑤𝑘𝑘 in GFs. the original 𝑤𝑤𝑘𝑘 used by row-wise and column-wise GFs, respec-
tively, are given in Figure SN 1.5A. with dealing with stripes oriented 𝜃𝜃, 𝑤𝑤𝑘𝑘 should be 
rotated to be along the stripes, i.e., 𝜃𝜃, for row-wise 𝜆𝜆GF when refining the output of 
the neural network. In comparison, the column-wise GF used in the GF-based simi-
larity loss term should be rotated so as to against the stripes, that is 𝜃𝜃 + 𝜋𝜋/2. The 
rotation of the window is implemented with ndimage.rotate function provided by 
Scipy package in Python. 𝑤𝑤𝑘𝑘 used to resolve stripes with 𝜃𝜃 = 𝜋𝜋/3 are displayed in 
Figure SN 1.5B. 

 

 
Figure SN 1.3. Fourier response of various derivative operators used by Leonardo-DeStripe in differ-

ent scenarios. 
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Figure SN 1.4. Fourier response of Hessian operators used by Leonardo-DeStripe in different sce-

narios. 

 

Figure SN 1.5. 𝑤𝑤𝑘𝑘 varies with resolving stripes with different orientations. 

 

Supplementary Note 2: Simulation of striping objects 
To quantitatively evaluate the performance of Leonardo-DeStripe, we use the stripe-less 
stack of the murine heart specimen processed via Leonardo-DeStripe (Fig. 2E in the main 
text) as ground truth and simulate stripe-shape shadows on it (Supplementary Fig. 2). 
Specifically, structured noise can be randomly generated for every slice of the input stack 
independently. Here we suppose the illumination lens is on the lefthand side. Thus, the 
structured noise is assumed to be consistent along every row, whose intensity should be 
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within a range of [0,1] to mimic the absorption of the illumination light. To mimic the spar-
sity of the absorbing obstacles, the structured noise is randomly sampled from a normal 
Gaussian distribution with intensities lower than 0.5 reset as 1, i.e., not affected by stripes. 
Finally, the stripes are blurred using a 2D Gaussian filter with a sigma of 5. The stripe-
corrupted SPIM stack can be finally generated by element-wisely multiplying the input 
stack with the simulated stripes. 

Supplementary Note 3: Simulation of SPIM datasets with se-
quential dual-sided illumination 
To quantify the performance of Leonardo-Fuse, specifically -illu branch, in restoring high-
quality image stack by fusing the two SPIM datasets illuminated via opposite lenses, we 
simulate two partially degraded out of a previously published PEGASOS cleared mouse 
brain labeled with THY1-eGFP (472×512×512 voxels)2. Since the specimen has been 
well-cleared in advance, it can be treated as an almost optimal ground truth (GT), that is, 
image quality is uniformly good as the light sheet penetrating the mouse brain. First, we 
create a series of pseudo- fusion boundaries 

 𝜔𝜔𝑧𝑧,𝑥𝑥
𝐺𝐺𝐺𝐺 = 64 �cos �2𝜋𝜋

𝑁𝑁𝑥𝑥
𝑥𝑥 − 𝜋𝜋� cos �2𝜋𝜋

𝑁𝑁𝑧𝑧
𝑧𝑧 − 𝜋𝜋� + 1� + 256  (15) 

where 𝜔𝜔𝐺𝐺𝐺𝐺 means the ground truth fusion boundaries that we simulate, 𝑥𝑥 ∈ {1,2,⋯ ,𝑁𝑁𝑥𝑥}, 
𝑧𝑧 ∈ {1,2,⋯ ,𝑁𝑁𝑧𝑧} , for this mouse brain specimen, 𝑁𝑁𝑥𝑥 = 512 , 𝑁𝑁𝑧𝑧 = 472 . Thus, 𝜔𝜔𝑧𝑧,:

𝐺𝐺𝐺𝐺 ∈
[192,320] lying in the middle of the 𝑧𝑧-th slice, is the simulated fusion boundary for the 𝑧𝑧-
th slice. Next, suppose the illumination lens is placed on the lefthand side, we define the 
part of image on the left side of 𝜔𝜔𝑧𝑧,:

𝐺𝐺𝐺𝐺 to be unaffected by aberrations, whereas the opposite 
part is gradually degraded by light scattering along the illumination direction: 

 𝑂𝑂𝑧𝑧,𝑥𝑥,𝑦𝑦
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �

𝛼𝛼�𝑧𝑧,𝑥𝑥,𝑦𝑦𝑃𝑃𝑧𝑧,𝑥𝑥,𝑦𝑦 + (1 − 𝛼𝛼�𝑧𝑧,𝑥𝑥,𝑦𝑦)𝑄𝑄𝑧𝑧,𝑥𝑥,𝑦𝑦, if 𝑦𝑦 > 𝜔𝜔𝑧𝑧,𝑥𝑥
𝐺𝐺𝐺𝐺

𝑃𝑃𝑧𝑧,𝑥𝑥,𝑦𝑦, otherwise  (16) 

where 𝛼𝛼�𝑧𝑧,𝑥𝑥,𝑦𝑦 = 𝛼𝛼𝑧𝑧,𝑥𝑥,𝑦𝑦
max
𝑦𝑦

𝛼𝛼𝑧𝑧,𝑥𝑥,𝑦𝑦�  is the weighting parameter at the (𝑧𝑧, 𝑥𝑥,𝑦𝑦)  position with 

𝛼𝛼𝑧𝑧,𝑥𝑥,𝑦𝑦 = 𝑒𝑒
−5

�𝑦𝑦−𝜔𝜔𝑧𝑧,𝑥𝑥𝐺𝐺𝐺𝐺�

�𝑁𝑁𝑦𝑦−𝜔𝜔𝑧𝑧,𝑥𝑥
𝐺𝐺𝐺𝐺�, 𝑂𝑂 is the simulation result with righthand side degraded as a weighted 

combination of input sharp volume 𝑃𝑃 and a degraded 𝑄𝑄 obtained by uniformly blurring 𝑃𝑃 
using a 3D Gaussian kernel (sigma of 50). Since 𝛼𝛼� monotonically decrease along the 
illumination direction, i.e., y-axis, 𝑂𝑂 is simulated to be more affected by the light scattering, 
i.e., getting blurry, as the illumination light getting deeper into the specimen. Partially de-
graded 𝑂𝑂𝑧𝑧,𝑥𝑥,𝑦𝑦

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 with the illumination lens on the righthand side can be simulated with similar 
strategy using Eq. (16), with degradation only happens when 𝑦𝑦 ≤ 𝜔𝜔𝑧𝑧,𝑥𝑥

𝐺𝐺𝐺𝐺. As a result, the 
obtained 𝑂𝑂𝑧𝑧,𝑥𝑥,𝑦𝑦

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  and 𝑂𝑂𝑧𝑧,𝑥𝑥,𝑦𝑦
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡  mimic the mouse brain tissue being sequentially illuminated 



 

Liu et al. 2024 Leonardo 23 

from the lefthand and righthand sides, respectively. During simulation experiments, re-
sults from various fusion algorithms can be quantitatively compared to the ground truth 𝑃𝑃 
(Extended Data Fig. 8 in the main text). Additionally, the fusion boundary learnt by Leo-
nardo-Fuse (along illumination) can also be compared to the pseudo- fusion boundary 
𝜔𝜔𝐺𝐺𝐺𝐺. 

Supplementary Note 4: Information content assessment 
Information content assessment is performed using a combination of discrete cosine 
transform (DCT-II) and Shannon entropy to measure image quality3. Image patches 𝐼𝐼 ∈
ℝ𝑀𝑀×𝑁𝑁 are firstly transformed into the cosine frequency domain: 

 
𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢, 𝜈𝜈) = 2

𝑁𝑁
∑  𝑀𝑀−1
𝑖𝑖=0 ∑  𝑁𝑁−1

𝑗𝑗=0 𝛿𝛿(𝑖𝑖)𝛿𝛿(𝑗𝑗)cos �𝜋𝜋𝜋𝜋
2𝑀𝑀

(2𝑖𝑖 + 1)� cos �𝜋𝜋𝜋𝜋
2𝑁𝑁

(2𝑗𝑗 + 1)� 𝐼𝐼(𝑖𝑖, 𝑗𝑗)

where 𝛿𝛿(𝑡𝑡) = �
1
√2

if 𝑡𝑡 = 0
1 otherwise

 (17) 

where 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑 ∈ ℝ𝑀𝑀×𝑁𝑁 is the discrete cosine transform of the patch 𝐼𝐼. Next, the spectral en-
tropy is used to calculate the information content of the patch 𝐼𝐼: 

 𝑆𝑆𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = −∑  𝑛𝑛
𝑖𝑖=1 ∑  𝑛𝑛

𝑗𝑗=1 𝑝𝑝𝑖𝑖,𝑗𝑗ln 𝑝𝑝𝑖𝑖,𝑗𝑗  (18) 

where 𝑝𝑝𝑖𝑖,𝑗𝑗 = 𝑃𝑃𝑖𝑖,𝑗𝑗
∑  𝑖𝑖,𝑗𝑗 𝑃𝑃𝑖𝑖,𝑗𝑗

, 𝑃𝑃𝑖𝑖,𝑗𝑗 = 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖,𝑗𝑗)2

(𝑀𝑀×𝑁𝑁)2
, 𝑆𝑆𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the Shannon entropy of the transformed im-

age. 

Supplementary Note 5: SPIM registration 
It is fundamentally crucial for fusing SPIM datasets to perform on well-registered SPIM 
pairs4. In most commercial/scientific light sheet-based setups, for example dual-sided il-
lumination lenses in SPIM and Blaze and dual-sided detection lenses in X-SPIM, lenses 
have been well-aligned in advance. Hence, in Leonardo, there is only one scenario re-
quiring registration by the algorithm, that is when opposite detection lenses are mimicked 
by rotating the specimen 180°. However, since in different input image stacks, only a 
complementary part of the specimen can be well-imaged in detail (Fig. 1B), registration 
in SPIM datasets is extremely challenging. Hence, we recommend users of Leonardo-
Fuse to manually register the input stacks in advance, or consider bead-based registra-
tion plugins5 which require embedding fluorescent beads in the mounting medium around 
the specimen in advance. Nevertheless, in Leonardo-Fuse, we optimize a 3D image-
based registration workflow in ANTsPy6 which can be useful when pre-registration is not 
available. Specifically, in order to ensure as much overlap of usable information of the 
specimen as possible, registration is estimated based on fusion result from Leonardo-
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Fuse (along illumination) and then applied to both image stacks captured via back detec-
tion lens. Otherwise, for light sheet setups where dual-sided illumination is performed 
simultaneously, e.g., Blaze, registration is estimated on the input stacks directly. An illus-
tration of the entire workflow of Leonardo-Fuse when registration in-between is required 
is given in Supplementary Fig. 6. 

Registration in Leonardo includes three steps in total. Given the two fusion results, 
one 𝑋𝑋𝐹𝐹𝐹𝐹 by fusing two stacks with dual-sided illumination and front detection and the 
other 𝑋𝑋𝐵𝐵𝐵𝐵 by fusing volumes with dual-sided illumination and back detection, Leonardo 
firstly translates 𝑋𝑋𝐵𝐵𝐵𝐵 to the same space as 𝑋𝑋𝐹𝐹𝐹𝐹. To fasten the optimization, this translation 
transformation is learnt based on maximum intensity projection (MIP) in 2D. Specifically, 
the translation steps along z-axis, namely 𝑡𝑡𝑧𝑧, and x-axis, termed 𝑡𝑡𝑥𝑥, are firstly learnt based 
on MIP of 𝑋𝑋𝐹𝐹𝐹𝐹 and 𝑋𝑋𝐵𝐵𝐵𝐵 along y-axis: 

 𝑇𝑇1 = �
1 0
0 1

0 𝑡𝑡𝑧𝑧
0 𝑡𝑡𝑥𝑥

0 0
0 0

1 0
0 1

�  (19) 

whereas the translation step along y-axis, termed 𝑡𝑡𝑦𝑦, is learnt based on MIP of 𝑋𝑋𝐹𝐹𝐹𝐹 and 
𝑋𝑋𝑇𝑇1
𝐵𝐵𝐵𝐵 mapped via 𝑇𝑇1 along z-axis: 

 𝑇𝑇2 = �

1 0
0 1

0 0
0 0

0 0
0 0

1 𝑡𝑡𝑦𝑦
0 1

�  (20) 

as a result, 𝑋𝑋𝐵𝐵𝐵𝐵 is mapped as 𝑋𝑋𝑇𝑇1,𝑇𝑇2
𝐵𝐵𝐵𝐵 , which is in the same space as 𝑋𝑋𝐹𝐹𝐹𝐹 via 𝑇𝑇2 × 𝑇𝑇1. 

Next, a Rigid transformation is learnt as fine registration, which includes rotation and 
translation in 3D simultaneously. As one of the most state-of-the-art toolkits for image 
registration, ANTsPy houses top-performing algorithms used worldwide by scientific com-
munities for registering biological or medical imaging data. Nevertheless, one of the major 
drawbacks of ANTsPy is being computationally expensive, especially when processing 
light sheet-based datasets up to Terabyte scale. Thus, 3D Rigid registration between 𝑋𝑋𝐹𝐹𝐹𝐹 
and 𝑋𝑋𝑇𝑇1,𝑇𝑇2

𝐵𝐵𝐵𝐵  is estimated under 8-bit unsigned integer. Moreover, the registration is esti-
mated within a bounding box. The expansion of the bounding box in xy is defined by 
segmenting the MIP of 𝑋𝑋𝐹𝐹𝐹𝐹 and 𝑋𝑋𝑇𝑇1,𝑇𝑇2

𝐵𝐵𝐵𝐵  along z-axis. Meanwhile, its expansion along z is 
determined such that the bounding box includes no more than 200 × 1024 × 1024 pixels, 
tested on 50 GB system random-access memory (RAM), in total in 3D. Additionally, in 
case of system RAM smaller than our testing setup, we allow users to define down-sam-
ple ratios, axial_upsample and lateral_upsample for xy and z, respectively, for 
registration. As a result, 𝑋𝑋𝑇𝑇1,𝑇𝑇2

𝐵𝐵𝐵𝐵  is mapped as 𝑋𝑋𝑇𝑇1,𝑇𝑇2,𝑇𝑇3
𝐵𝐵𝐵𝐵  after registration using the learnt 

transformation matrix 𝑇𝑇3 in a format of: 
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 𝑇𝑇3 = �

1 𝑚𝑚𝑧𝑧
𝑚𝑚𝑥𝑥 1

𝑛𝑛𝑧𝑧 𝑡𝑡𝑧𝑧
𝑛𝑛𝑥𝑥 𝑡𝑡𝑥𝑥

𝑚𝑚𝑦𝑦 𝑛𝑛𝑦𝑦
0 0

1 𝑡𝑡𝑦𝑦
0 1

�  (21) 

Finally, in case of the aforementioned Rigid transformation learnt in a down-sampled 
space, a descriptor-based Affine registration is learnt under the original resolution. Spe-
cifically, the affine transformation is estimated based on anchor points extracted using 2D 
Difference of Gaussian (DoG) method for the sake of memory efficiency. The extracted 
descriptors are then registered using Iterative Closest Point (ICP) registration algorithm7, 
which is implemented using Open3D package in Python. 

Overall, registration in Leonardo includes three rounds, that is translation in 2D, Rigid 
in 3D (potentially down-sampled) and Affine transformation in 3D and full-resolution, from 
coarse to fine. In addition, lateral and axial resolutions of the input stacks are required by 
all three rounds of registration. 

Supplementary Note 6: Optimized Leonardo-Fuse for large 
tissue 
As a GPU-aided post-processing tool, Leonardo-Fuse requires a decent number of com-
putational resources. Moreover, if registration is needed, sufficient system RAM is crucial 
(as previously mentioned, ANTsPy, the registration toolbox we use, is computationally 
demanding). Therefore, when processing extremely large specimens, a specialized ver-
sion of Leonardo-Fuse has been optimized, as illustrated in Extended Data Fig. 10A in 
the main text. In this version, the input volumes are firstly downsampled, where the sam-
pling ratio can be defined by users based on the capabilities of their computing machine. 
Especially, this downsampling does not significantly affect the accuracy of the estimated 
fusion boundary, owing to the continuity of biological specimens. In comparison, the reg-
istration matrix learnt in the downsampled space, if estimated, may be less accurate. 
Therefore, the learned registration matrix is to be refined at full resolution. Considering 
the significant computational burden of image-based registration, this refinement is real-
ized using only the final round of descriptor-based Affine registration which is described 
in the previous Supplementary Note 5. As a result, given the registered front-back input 
pair, Leonardo-Fuse can fuse them based on the upsampled fusion boundary. This fol-
lows the same strategy to refine the fusion boundary based on GF, as described in Meth-
ods in the main text. 

Supplementary Note 7: Leonardo-DeStripe-Fuse 
Given the fusion boundary along illumination, which is pre-estimated on the stripe-cor-
rupted data, and two input slices with opposing orientations, the integration of Leonardo-
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DeStripe-Fuse aims to simultaneously remove stripes in both inputs. In this process, Le-
onardo-DeStripe focuses exclusively on destriping regions that will be incorporated into 
the final fusion result. Specifically, within the deep learning-parameterized ADMM frame-
work (illustrated in Extended Data Fig. 2C in the main text), the two input slices (in the 
Fourier domain) are first mapped to a high-dimensional feature space using the same 
MLPℂ which has been discussed in Methods in the main text. In comparison, the subse-
quent anisotropic TV unit is not shared between the two opposing orientations. Instead, 
two separate groups of anisotropic TV units are deployed for each input in parallel. Each 
group may consist of multiple anisotropic TV units, with each unit dedicated to resolving 
stripes in one specific orientation. Thus, Leonardo-DeStripe-Fuse can be easily extended 
to multi-directional light sheet-based systems (e.g., UltraMicroscope Blaze). The learned 
feature maps from both inputs are then projected back to one-dimensional space using 
the same MLPℂ. Meanwhile, two DC branches work in parallel to infer the baseline com-
ponent for each input after stripe correction. The two outputs of the network, denoted as 
𝑋𝑋�1 and 𝑋𝑋�2, are finally projected back to the image space using inverse FFT, and later 
fused into 𝑋𝑋� (following definitions used in Methods in the main text) using the same strat-
egy as Leonardo-Fuse (along illumination). The remaining parts, together with the training 
process, of the network follow the same strategy as Leonardo-DeStripe. The only differ-
ence is that when composing full-resolution stripe-less result using 𝜆𝜆GF, 𝜆𝜆GF is applied 
twice separately to 𝑋𝑋�1 and 𝑋𝑋�2, with the outputs fused again based on the fusion boundary. 
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