

Liu et al. 2024 Leonardo 1

Supplementary Information for
Leonardo: a toolset to remove sample-induced aberrations in

light sheet microscopy images

Yu Liu1,*, Gesine F. Müller2,*, Lennart Kowitz3,*, Tomáš Chobola1,4, Kurt Weiss5, Paul Maier2, Jie
Luo6,7,8,9, Malte Roeßing3, Martin Stenzel3, Anika Grüneboom3, Johannes Paetzold6, Ali
Ertürk6,7,8,10, Nassir Navab11,12, Carsten Marr13, Jianxun Chen3,†, Jan Huisken2,5,14,†, Tingying
Peng1,4,13,†

1 School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
2 Multiscale Biology, Department of Biology and Psychology, Georg-August-University Gottingen, Göttingen, Ger-
many
3 Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
4 Helmholtz AI, Helmholtz Munich, Neuherberg, Germany
5 Morgridge Institute for Research, Madison, WI, USA
6 Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
7 Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University,
Munich, Germany
8 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
9 Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette,
IN 47907, USA
10 School of Medicine, Koç University, İstanbul, Turkey
11 Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany
12 Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, USA
13 Institute of AI for Health, Helmholtz Munich, Neuherberg, Germany
14 Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC),
University of Göttingen, Germany

* These authors contributed equally, † Corresponding authors

Liu et al. 2024 Leonardo 2

Content
Supplementary Figures .. 3

Supplementary Fig. 1 ... 3
Supplementary Fig. 2 ... 4
Supplementary Fig. 3 ... 5
Supplementary Fig. 4 ... 6
Supplementary Fig. 5 ... 7
Supplementary Fig. 6 ... 8
Supplementary Fig. 7 ... 9
Supplementary Fig. 8 ... 10
Supplementary Fig. 9 ... 11
Supplementary Fig. 10 ... 12
Supplementary Fig. 11 ... 13
Supplementary Fig. 12 ... 14

Supplementary Notes ... 15
Supplementary Note 1  Leonardo-DeStripe ... 15

Supplementary Note 1.1  Stripe remover regularized by anisotropic total variation 15
Supplementary Note 1.2  Improvement of Leonardo-DeStripe from Bayesian perspective ... 17
Supplementary Note 1.3  Guided filtering with various parameters .. 17
Supplementary Note 1.4  Leonardo-DeStripe is rotatable for stripes with arbitrary directions 18

Supplementary Note 2  Simulation of striping objects ... 21
Supplementary Note 3  Simulation of SPIM datasets with sequential dual-sided illumination 22
Supplementary Note 4  Information content assessment .. 23
Supplementary Note 5  SPIM registration .. 23
Supplementary Note 6  Optimized Leonardo-Fuse for large tissue ... 25
Supplementary Note 7  Leonardo-DeStripe-Fuse .. 25

Liu et al. 2024 Leonardo 3

Supplementary Figures

Supplementary Fig. 1. A comparison between Leonardo-DeStripe and conventional 2D band-pass FFT
filter with different angular coverages of the wedge-shaped mask. From left to right, the angular coverage
of the masking region in the FFT filter increases from ±9° to ±29°. Note that the GNN in Leonardo-DeStripe
is operated after downsampling (ratio of 3).

Liu et al. 2024 Leonardo 4

Supplementary Fig. 2. Simulation of striping SPIM. Adipose tissue is used as a stripe-free ground truth
image. Structured noise is simulated to mimic horizontal and multiplicative stripes.

Liu et al. 2024 Leonardo 5

Supplementary Fig. 3. Stripe removal results on zebrafish brain dataset. Leonardo-DeStripe successfully
removes the thick stripes without dampening the Fourier projection, compared to the residual stripes from
MDSR.

Liu et al. 2024 Leonardo 6

Supplementary Fig. 4. Stripe removal result using Leonardo-DeStripe on a zebrafish brain dataset. The
stripes in the input dataset, which are originally horizontal (Fig. 2F in the main text). We manually rotate the
stack 45° to test the extensibility of Leonardo-DeStripe.

Liu et al. 2024 Leonardo 7

Supplementary Fig. 5. Simulation of two partially degraded SPIM volumes. Deteriorated stacks are simu-
lated to become more degraded as they get farther from the illumination sources.

Liu et al. 2024 Leonardo 8

Supplementary Fig. 6. An illustration of registration workflow in Leonardo which is based on ANTsPy (ants).
From coarse to fine, Leonardo registers input datasets using their maximum intensity projections (along y
axis, i.e., yMIP or along z axis, i.e., zMIP), 3D downsampled and cropped volume stacks (BoundingBox),
and extracted point anchors at full resolution, from step to step.

Liu et al. 2024 Leonardo 9

Supplementary Fig. 7. Registration performance from coarse to fine. The stack acquired using camera in
the back is gradually aligned with the volume captured with camera in the front (white and orange arrows
in the 3D overlay and white arrows in 2D overlay at a depth of 596 µm).

Liu et al. 2024 Leonardo 10

Supplementary Fig. 8. The whole Leonardo-Fuse workflow when registration is required on a H2B-GFP
labeled transgenic zebrafish. Leonardo-Fuse (along illumination) is first performed twice for stacks with
different detection cameras independently. Registration is then optimized based on fusion result along illu-
mination. Using registered stacks, Leonardo-Fuse (along detection) is realized as final step.

Liu et al. 2024 Leonardo 11

Supplementary Fig. 9. Normal Leonardo workflow, where DeStripe module is performed on individual
dataset separately. Fuse module is then used for dataset integration, which is able to not only fuse stack
to maximize optical coverage but also resolve remaining extremely thick and dark stripes after DeStripe
(white arrows).

Liu et al. 2024 Leonardo 12

Supplementary Fig. 10. Workflow of Leonardo-DeStripe-Fuse. Compared to the normal workflow in which
Leonardo-DeStripe is performed multiple times on datasets with opposite illumination orientations inde-
pendently, this fusion-first approach improves computational efficiency, as Leonardo-DeStripe is performed
only once.

Liu et al. 2024 Leonardo 13

Supplementary Fig. 11. Deconvolution results from foundation model UniFMIR, one of the most recent
universal fluorescence microscopy-based image restoration models to address different restoration prob-
lems. It can be applied to enhance resolution (yellow arrow) right after Leonardo-Fuse removing all blurry
regions (white arrow).

Liu et al. 2024 Leonardo 14

Supplementary Fig. 12. Multi-angular fusion results from Huygens. After applying Huygens on fusion re-
sults from Leonardo-Fuse, sample information is furthered gathered together (white and yellow arrows).
However, misalignment exists (circle regions), as Huygens requires manual registration which is extremely
challenging in huge datasets.

Liu et al. 2024 Leonardo 15

Supplementary Notes

Supplementary Note 1: Leonardo-DeStripe

1.1 Stripe remover regularized by anisotropic total variation
Before Leonardo-DeStripe, there were several useful stripe removers which treat the
destriping issue as an ill-posed inverse problem. The isotropic total variation (TV) regu-
larized split Bregman framework, which we mentioned in the Methods in the main text, is
one of the typical:

⟺ argmin

𝑋𝑋�

1
2
�𝑋𝑋� − 𝐼𝐼𝑠𝑠�2

2 + 𝜆𝜆R�𝑋𝑋��

⟺ argmin
𝑋𝑋�

1
2
�𝑋𝑋� − 𝐼𝐼𝑠𝑠�2

2 + 𝜆𝜆 ��∇𝑥𝑥𝑋𝑋��1 + �∇𝑦𝑦�𝑋𝑋� − 𝐼𝐼𝑠𝑠��1�
 (1)

where we follow all the definitions that we made in the main text. Since the energy function
on 𝑋𝑋� is intractable, split Bregman is adopted to convert the unconstrained minimization
problem on 𝑋𝑋� into a constrained one by introducing auxiliary variables 𝐺𝐺𝑥𝑥 = ∇𝑥𝑥𝑋𝑋� and 𝐺𝐺𝑦𝑦 =
∇𝑦𝑦𝑋𝑋�:

 argmin
𝑋𝑋�

1
2
�𝑋𝑋� − 𝐼𝐼𝑠𝑠�2

2 + 𝜆𝜆 �‖𝐺𝐺𝑥𝑥‖1 + �𝐺𝐺𝑦𝑦 − ∇𝑦𝑦𝐼𝐼𝑠𝑠�1� 𝑠𝑠. 𝑡𝑡.𝐺𝐺𝑥𝑥 = ∇𝑥𝑥𝑋𝑋� ,𝐺𝐺𝑦𝑦 = ∇𝑦𝑦𝑋𝑋� (2)

Subsequently, by using the Bregman iteration to enforce the constraints weakly, Eq.
(2) can further be transformed into a non-constrained minimization:

 argmin
𝑋𝑋� ,𝐺𝐺𝑥𝑥,𝐺𝐺𝑦𝑦

�
+ 1

2
�𝑋𝑋� − 𝐼𝐼𝑠𝑠�2

2 + 𝜆𝜆 �‖𝐺𝐺𝑥𝑥‖1 + �𝐺𝐺𝑦𝑦 − ∇𝑦𝑦𝐼𝐼𝑠𝑠�1�

+ 𝛼𝛼
2
�𝐺𝐺𝑥𝑥 − ∇𝑥𝑥𝑋𝑋� − 𝐵𝐵𝑥𝑥�2

2 + 𝛽𝛽
2
�𝐺𝐺𝑦𝑦 − ∇𝑦𝑦𝑋𝑋� − 𝐵𝐵𝑦𝑦�2

2� (3)

here, the minimizations of Eq. (3) with respect to 𝑋𝑋�, 𝐺𝐺𝑥𝑥 and 𝐺𝐺𝑦𝑦 can be decoupled, and
thus, they can be further converted into three separate sub-minimization problems:

 the 𝐺𝐺𝑥𝑥-related subproblem:

 argmin
𝐺𝐺𝑥𝑥

�𝜆𝜆{‖𝐺𝐺𝑥𝑥‖1} + 𝛼𝛼
2
�𝐺𝐺𝑥𝑥 − ∇𝑥𝑥𝑋𝑋� (𝑘𝑘) − 𝐵𝐵𝑥𝑥

(𝑘𝑘)�
2

2
� (4)

 the 𝐺𝐺𝑦𝑦-related subproblem:

 argmin
𝐺𝐺𝑦𝑦

�𝜆𝜆�𝐺𝐺𝑦𝑦 − ∇𝑦𝑦𝐼𝐼𝑠𝑠�1 + 𝛽𝛽
2
�𝐺𝐺𝑦𝑦 − ∇𝑦𝑦𝑋𝑋� (𝑘𝑘) − 𝐵𝐵𝑦𝑦

(𝑘𝑘)�
2

2
� (5)

where the 𝐺𝐺𝑥𝑥- and 𝐺𝐺𝑦𝑦-related subproblems can be solved as in Eq. (6) in the main text
by using shrinkage operator.

 the 𝑋𝑋�-related subproblem:

Liu et al. 2024 Leonardo 16

 argmin
𝑋𝑋�

�1
2
�𝑋𝑋� − 𝐼𝐼𝑠𝑠�2

2 + 𝛼𝛼
2
�𝐺𝐺𝑥𝑥

(𝑘𝑘+1) − ∇𝑥𝑥𝑋𝑋� − 𝐵𝐵𝑥𝑥
(𝑘𝑘)�

2

2
+ 𝛽𝛽

2
�𝐺𝐺𝑦𝑦

(𝑘𝑘+1) − ∇𝑦𝑦𝑋𝑋� − 𝐵𝐵𝑦𝑦
(𝑘𝑘)�

2

2
� (6)

which is a least-square problem equivalent to:

 �𝐼𝐼 + 𝛼𝛼∇𝑥𝑥𝑇𝑇∇𝑥𝑥 + 𝛽𝛽∇𝑦𝑦𝑇𝑇∇𝑦𝑦�𝑋𝑋� = 𝐼𝐼𝑠𝑠 + 𝛼𝛼∇𝑥𝑥𝑇𝑇(𝐺𝐺𝑥𝑥𝑘𝑘+1 − 𝐵𝐵𝑥𝑥𝑘𝑘) + 𝛽𝛽∇𝑦𝑦𝑇𝑇�𝐺𝐺𝑦𝑦𝑘𝑘+1 − 𝐵𝐵𝑦𝑦𝑘𝑘� (7)

which can be solved by using fast Fourier transform efficiently as in Eq. (6) in the
main text.

Additionally, the Bregman variables, 𝐵𝐵𝑥𝑥
(𝑘𝑘) and 𝐵𝐵𝑦𝑦

(𝑘𝑘) can be updated correspondingly:

 �
𝐵𝐵𝑥𝑥

(𝑘𝑘+1) = 𝐵𝐵𝑥𝑥
(𝑘𝑘) + �∇𝑥𝑥𝑋𝑋� (𝑘𝑘+1) − 𝐺𝐺𝑥𝑥

(𝑘𝑘+1)�

𝐵𝐵𝑦𝑦
(𝑘𝑘+1) = 𝐵𝐵𝑦𝑦

(𝑘𝑘) + �∇𝑦𝑦𝑋𝑋� (𝑘𝑘+1) − 𝐺𝐺𝑦𝑦
(𝑘𝑘+1)�

 (8)

We additionally visualize the aforementioned split Bregman during the first iteration
as Figure SN 1.1. It is clear to see that the deep learning architecture in Leonardo-
DeStripe (Extended Data Fig. 2) mimics the first iteration in split Bregman optimization,
which encourages the interpretability of Leonardo-DeStripe. The only difference is that
Leonardo-DeStripe, empowered by the DC branch, is able to ignore 𝑋𝑋� (0), i.e., the stripe-
corrupted 𝐼𝐼𝑠𝑠, when composing 𝑋𝑋� (1), thus only require one-iteration learning when remov-
ing the stripes.

Figure SN 1.1. First iteration of a split Bregman framework regularized with anisotropic total varia-
tion.

Liu et al. 2024 Leonardo 17

1.2 Improvement of Leonardo-DeStripe from Bayesian perspective
When analyzing the aforementioned split Bregman framework when being suboptimal in
stripe removal, we start by examining Eq. (1) from a Bayesian perspective. Specifically,
as restoring a stripe-less 𝑋𝑋� out of the degradation 𝐼𝐼𝑠𝑠 is ill-posed, Eq. (1) originates from
the following Maximum A Posteriori (MAP) estimation problem:

𝑋𝑋� = argmax

𝑋𝑋
�log�𝑝𝑝(𝐼𝐼𝑠𝑠|𝑋𝑋)� + log(𝑝𝑝(𝑋𝑋))�

𝑋𝑋� = argmin
𝑋𝑋

� 1
2𝜎𝜎2

‖𝐼𝐼𝑠𝑠 − 𝑋𝑋‖2 + R(𝑋𝑋)�
 (9)

where log�𝑝𝑝(𝐼𝐼𝑠𝑠|𝑋𝑋)� is the log-likelihood of observing 𝑋𝑋 given 𝑋𝑋, log-prior log(𝑝𝑝(𝑋𝑋)) deliv-
ers the prior of stripe-less 𝑋𝑋 and is independent of degraded 𝐼𝐼𝑠𝑠. Moreover, by assuming
pixel-independent Gaussian noise, log�𝑝𝑝(𝐼𝐼𝑠𝑠|𝑋𝑋)� encourages data fidelity between predic-
tion 𝑋𝑋 and input 𝐼𝐼𝑠𝑠, whereas log(𝑝𝑝(𝑋𝑋)) becomes anisotropic TV prior R(𝑋𝑋). In the other
word, trade-off parameter 𝜆𝜆 in Eq. (1) is equivalent to 2𝜎𝜎2, that is the standard deviation
of the Gaussian distribution we primarily impose on the noise. However, the assumed
Gaussian distribution does not hold for noises in stripe removal task, as 𝐼𝐼𝑠𝑠 − 𝑋𝑋 represents
the pixel-dependent and non-zero-mean stripe noise. To correct this, 1

2𝜎𝜎2
‖𝐼𝐼𝑠𝑠 − 𝑋𝑋‖2, or 𝜎𝜎,

should be pixel-variant, which in practice is intractable. Thus, in Leonardo-DeStripe im-
plicitly replaces the 1

2𝜎𝜎2
‖𝐼𝐼𝑠𝑠 − 𝑋𝑋‖2 by:

 solving the 𝐺𝐺𝑥𝑥 -related subproblem using a GNN, where the wedge-shaped mask
draws the attention of the stripe resolver to a wedge-shaped region in Fourier per-

pendicular to the stripe orientation. Conceptionally, threshold 𝜆𝜆
𝛼𝛼

= 2𝜎𝜎2

𝛼𝛼
 in the shrinkage

operator is now spatial-variant with an attention focusing on the stripe-related pixels
only.

 composing the stripe-less 𝑋𝑋� based on only 𝐺𝐺𝑥𝑥 and 𝐺𝐺𝑦𝑦. Hence, 1
2𝜎𝜎2

‖𝐼𝐼𝑠𝑠 − 𝑋𝑋‖2 it totally
ignored in the 𝑋𝑋�-related subproblem.

1.3 Guided filtering with various parameters
In Leonardo-DeStripe, guided filtering (GF) has been used multiple times with different
setting of size of the window 𝑤𝑤𝑘𝑘 and penalization parameter 𝜖𝜖. Here, on a murine heart
specimen (Fig. 2E in the main text), we vary 𝑤𝑤𝑘𝑘 and 𝜖𝜖, with the striping image serving as
both filter input and guidance image, to see the effect. In Figure SN 1.2, from left to right,
image details of filter output get removed as penalization parameter 𝜖𝜖 getting larger, which
is consistent to the previous findings1. Moreover, due to the directionality of the stripes,
𝑤𝑤𝑘𝑘, either along column or row, empowers GF with different properties. Specifically, 𝑤𝑤𝑘𝑘
against the stripes, termed column-wise GF in Figure SN 1.2, is able to remove the
stripes by using larger 𝜖𝜖, although fine details in the murine heart will be oversmoothed

Liu et al. 2024 Leonardo 18

as well. In comparison, row-wise GF, which operates along the stripes, will not remove
the stripes even with 𝜖𝜖 = 10, which, on the other hand, indicates the learnt 𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘 be-
ing window-based constant, and hence, sample signals will be reserved at most after row-
wise GF. This explains why:

 the GF used by Leonardo-DeStripe to refine stripe-less output 𝑋𝑋� of the deep learning
should be row-wise and with small 𝜀𝜀, so as to preserve sample information as much
as possible.

 the GF used by Leonardo-DeStripe in the GF-based similarity loss term should be
column-wise and with large 𝜀𝜀, in order to encourage the similarity between learnt
stripe-less 𝑋𝑋� and striping 𝐼𝐼𝑠𝑠 after stripes and/or sample details being removed.

Figure SN 1.2. Column-wise and row-wise GFs with various 𝑤𝑤𝑘𝑘 and 𝜀𝜀.

1.4 Leonardo-DeStripe is rotatable for stripes with arbitrary directions
Beyond removing horizontal stripes, Leonardo-DeStripe is extensible to resolve stripes
with arbitrary angular orientation, as all operations inside are rotatable. Specifically, there
are four operators in the Leonardo-DeStripe that need to be rotated when meeting stripes
along angle of 𝜃𝜃 (in radius) (Extended Data Fig. 2 in the main text):

 the wedge-shaped mask. The orientation of the mask is correspondingly rotated as
𝜃𝜃 + 𝜋𝜋/2.

Liu et al. 2024 Leonardo 19

 first-order derivative operators including ∇𝑥𝑥, ∇𝑦𝑦, ∇𝑥𝑥𝑇𝑇, and ∇𝑥𝑥𝑇𝑇. In practice, when the ori-
entation of the stripes is along either horizontal or vertical, we use the total variation
operator to extract first-order derivative:

 ∇𝑥𝑥= � 1
−1� , ∇𝑦𝑦= [−1,1] (10)

whose Fourier projection is given in Figure SN 1.3A. Since it’s not rotatable, we,
instead, use to following alternatives to extract first-order derivative along horizontal
and vertical:

 ∇𝑥𝑥= �
0.3678 0 −0.3678
0.6065 0 −0.6065
0.3678 0 −0.3678

� , ∇𝑦𝑦= �
0.3678 0.6065 0.3678

0 0 0
−0.3678 −0.6065 −0.3678

� (11)

whose Fourier projection is given in Figure SN 1.3B. Hence, the derivatives along or
against the stripes can be calculated using the following operators, respectively:

∇⊥= cos(−𝜃𝜃𝜃𝜃)∇𝑥𝑥 + sin(−𝜃𝜃𝜃𝜃)∇𝑦𝑦
∇∥= cos �−𝜃𝜃𝜃𝜃 + 𝜋𝜋

2
� ∇𝑥𝑥 + sin �−𝜃𝜃𝜃𝜃 + 𝜋𝜋

2
� ∇𝑦𝑦

 (12)

where ∇⊥ and ∇∥ denotes the derivative operator for the direction against or along the
stirpes, respectively. The Fourier response of ∇⊥ and ∇∥ when 𝜃𝜃 = 𝜋𝜋/4 are given in
Figure SN 1.3C. Hence, ∇𝑥𝑥 and ∇𝑦𝑦 , which are used by the original Leonardo-
DeStripe, are to be replaced by ∇⊥ and ∇∥, respectively. ∇𝑥𝑥𝑇𝑇, and ∇𝑥𝑥𝑇𝑇 can be replaced
by the inverse of ∇⊥ and ∇∥, correspondingly.

 second-order derivative operators including ∇𝑥𝑥𝑥𝑥 , ∇𝑥𝑥𝑥𝑥 and ∇𝑦𝑦𝑦𝑦. When facing stripes
along vertical or horizonal, ∇𝑥𝑥𝑥𝑥, ∇𝑥𝑥𝑥𝑥 and ∇𝑦𝑦𝑦𝑦, which are to calculate the second-order
derivative of the input images, are defined as Gaussian Hessian kernel:

∇𝑥𝑥𝑥𝑥= 𝑥𝑥2−𝜎𝜎2

2𝜋𝜋𝜎𝜎3
exp �− 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
�

∇𝑥𝑥𝑥𝑥= 𝑥𝑥𝑥𝑥
2𝜋𝜋𝜎𝜎6

exp �− 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
�

∇𝑦𝑦𝑦𝑦= 𝑦𝑦2−𝜎𝜎2

2𝜋𝜋𝜎𝜎3
exp �− 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
�

 (13)

where 𝜎𝜎 is the stand deviation of the Gaussian distribution and can be manually set
by the users (1 by default). When digitizing, the kernel size is 2 × ceil(6𝜎𝜎) + 1 with
ceil(∙) being the ceiling of the input. The Fourier response of Hessian operators when
𝜎𝜎 = 1 is given in Figure SN 1.4A. When stripes are along degree 𝜃𝜃, Hessian opera-
tors are rotated correspondingly:

∇⊥⊥= centerRotate(∇𝑥𝑥𝑥𝑥,𝜃𝜃)
∇⊥∥= centerRotate(∇𝑥𝑥𝑥𝑥,𝜃𝜃)
∇∥∥= centerRotate(∇𝑦𝑦𝑦𝑦,𝜃𝜃)

 (14)

Liu et al. 2024 Leonardo 20

where centerRotate(𝑋𝑋,𝜃𝜃) is to rotate matrix 𝑋𝑋 𝜃𝜃 degree with the origin of the rotation
being [ceil(6𝜎𝜎), ceil(6𝜎𝜎)]. The Fourier response of Hessian operators ∇⊥⊥, ∇⊥∥, and
∇∥∥ when 𝜎𝜎 = 1 and 𝜃𝜃 = 𝜋𝜋/3 is given in Figure SN 1.4B.

 window 𝑤𝑤𝑘𝑘 in GFs. the original 𝑤𝑤𝑘𝑘 used by row-wise and column-wise GFs, respec-
tively, are given in Figure SN 1.5A. with dealing with stripes oriented 𝜃𝜃, 𝑤𝑤𝑘𝑘 should be
rotated to be along the stripes, i.e., 𝜃𝜃, for row-wise 𝜆𝜆GF when refining the output of
the neural network. In comparison, the column-wise GF used in the GF-based simi-
larity loss term should be rotated so as to against the stripes, that is 𝜃𝜃 + 𝜋𝜋/2. The
rotation of the window is implemented with ndimage.rotate function provided by
Scipy package in Python. 𝑤𝑤𝑘𝑘 used to resolve stripes with 𝜃𝜃 = 𝜋𝜋/3 are displayed in
Figure SN 1.5B.

Figure SN 1.3. Fourier response of various derivative operators used by Leonardo-DeStripe in differ-

ent scenarios.

Liu et al. 2024 Leonardo 21

Figure SN 1.4. Fourier response of Hessian operators used by Leonardo-DeStripe in different sce-

narios.

Figure SN 1.5. 𝑤𝑤𝑘𝑘 varies with resolving stripes with different orientations.

Supplementary Note 2: Simulation of striping objects
To quantitatively evaluate the performance of Leonardo-DeStripe, we use the stripe-less
stack of the murine heart specimen processed via Leonardo-DeStripe (Fig. 2E in the main
text) as ground truth and simulate stripe-shape shadows on it (Supplementary Fig. 2).
Specifically, structured noise can be randomly generated for every slice of the input stack
independently. Here we suppose the illumination lens is on the lefthand side. Thus, the
structured noise is assumed to be consistent along every row, whose intensity should be

Liu et al. 2024 Leonardo 22

within a range of [0,1] to mimic the absorption of the illumination light. To mimic the spar-
sity of the absorbing obstacles, the structured noise is randomly sampled from a normal
Gaussian distribution with intensities lower than 0.5 reset as 1, i.e., not affected by stripes.
Finally, the stripes are blurred using a 2D Gaussian filter with a sigma of 5. The stripe-
corrupted SPIM stack can be finally generated by element-wisely multiplying the input
stack with the simulated stripes.

Supplementary Note 3: Simulation of SPIM datasets with se-
quential dual-sided illumination
To quantify the performance of Leonardo-Fuse, specifically -illu branch, in restoring high-
quality image stack by fusing the two SPIM datasets illuminated via opposite lenses, we
simulate two partially degraded out of a previously published PEGASOS cleared mouse
brain labeled with THY1-eGFP (472×512×512 voxels)2. Since the specimen has been
well-cleared in advance, it can be treated as an almost optimal ground truth (GT), that is,
image quality is uniformly good as the light sheet penetrating the mouse brain. First, we
create a series of pseudo- fusion boundaries

 𝜔𝜔𝑧𝑧,𝑥𝑥
𝐺𝐺𝐺𝐺 = 64 �cos �2𝜋𝜋

𝑁𝑁𝑥𝑥
𝑥𝑥 − 𝜋𝜋� cos �2𝜋𝜋

𝑁𝑁𝑧𝑧
𝑧𝑧 − 𝜋𝜋� + 1� + 256 (15)

where 𝜔𝜔𝐺𝐺𝐺𝐺 means the ground truth fusion boundaries that we simulate, 𝑥𝑥 ∈ {1,2,⋯ ,𝑁𝑁𝑥𝑥},
𝑧𝑧 ∈ {1,2,⋯ ,𝑁𝑁𝑧𝑧} , for this mouse brain specimen, 𝑁𝑁𝑥𝑥 = 512 , 𝑁𝑁𝑧𝑧 = 472 . Thus, 𝜔𝜔𝑧𝑧,:

𝐺𝐺𝐺𝐺 ∈
[192,320] lying in the middle of the 𝑧𝑧-th slice, is the simulated fusion boundary for the 𝑧𝑧-
th slice. Next, suppose the illumination lens is placed on the lefthand side, we define the
part of image on the left side of 𝜔𝜔𝑧𝑧,:

𝐺𝐺𝐺𝐺 to be unaffected by aberrations, whereas the opposite
part is gradually degraded by light scattering along the illumination direction:

 𝑂𝑂𝑧𝑧,𝑥𝑥,𝑦𝑦
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �

𝛼𝛼�𝑧𝑧,𝑥𝑥,𝑦𝑦𝑃𝑃𝑧𝑧,𝑥𝑥,𝑦𝑦 + (1 − 𝛼𝛼�𝑧𝑧,𝑥𝑥,𝑦𝑦)𝑄𝑄𝑧𝑧,𝑥𝑥,𝑦𝑦, if 𝑦𝑦 > 𝜔𝜔𝑧𝑧,𝑥𝑥
𝐺𝐺𝐺𝐺

𝑃𝑃𝑧𝑧,𝑥𝑥,𝑦𝑦, otherwise (16)

where 𝛼𝛼�𝑧𝑧,𝑥𝑥,𝑦𝑦 = 𝛼𝛼𝑧𝑧,𝑥𝑥,𝑦𝑦
max
𝑦𝑦

𝛼𝛼𝑧𝑧,𝑥𝑥,𝑦𝑦� is the weighting parameter at the (𝑧𝑧, 𝑥𝑥,𝑦𝑦) position with

𝛼𝛼𝑧𝑧,𝑥𝑥,𝑦𝑦 = 𝑒𝑒
−5

�𝑦𝑦−𝜔𝜔𝑧𝑧,𝑥𝑥𝐺𝐺𝐺𝐺�

�𝑁𝑁𝑦𝑦−𝜔𝜔𝑧𝑧,𝑥𝑥
𝐺𝐺𝐺𝐺�, 𝑂𝑂 is the simulation result with righthand side degraded as a weighted

combination of input sharp volume 𝑃𝑃 and a degraded 𝑄𝑄 obtained by uniformly blurring 𝑃𝑃
using a 3D Gaussian kernel (sigma of 50). Since 𝛼𝛼� monotonically decrease along the
illumination direction, i.e., y-axis, 𝑂𝑂 is simulated to be more affected by the light scattering,
i.e., getting blurry, as the illumination light getting deeper into the specimen. Partially de-
graded 𝑂𝑂𝑧𝑧,𝑥𝑥,𝑦𝑦

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 with the illumination lens on the righthand side can be simulated with similar
strategy using Eq. (16), with degradation only happens when 𝑦𝑦 ≤ 𝜔𝜔𝑧𝑧,𝑥𝑥

𝐺𝐺𝐺𝐺. As a result, the
obtained 𝑂𝑂𝑧𝑧,𝑥𝑥,𝑦𝑦

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑂𝑂𝑧𝑧,𝑥𝑥,𝑦𝑦
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 mimic the mouse brain tissue being sequentially illuminated

Liu et al. 2024 Leonardo 23

from the lefthand and righthand sides, respectively. During simulation experiments, re-
sults from various fusion algorithms can be quantitatively compared to the ground truth 𝑃𝑃
(Extended Data Fig. 8 in the main text). Additionally, the fusion boundary learnt by Leo-
nardo-Fuse (along illumination) can also be compared to the pseudo- fusion boundary
𝜔𝜔𝐺𝐺𝐺𝐺.

Supplementary Note 4: Information content assessment
Information content assessment is performed using a combination of discrete cosine
transform (DCT-II) and Shannon entropy to measure image quality3. Image patches 𝐼𝐼 ∈
ℝ𝑀𝑀×𝑁𝑁 are firstly transformed into the cosine frequency domain:

𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢, 𝜈𝜈) = 2

𝑁𝑁
∑  𝑀𝑀−1
𝑖𝑖=0 ∑  𝑁𝑁−1

𝑗𝑗=0 𝛿𝛿(𝑖𝑖)𝛿𝛿(𝑗𝑗)cos �𝜋𝜋𝜋𝜋
2𝑀𝑀

(2𝑖𝑖 + 1)� cos �𝜋𝜋𝜋𝜋
2𝑁𝑁

(2𝑗𝑗 + 1)� 𝐼𝐼(𝑖𝑖, 𝑗𝑗)

where 𝛿𝛿(𝑡𝑡) = �
1
√2

if 𝑡𝑡 = 0
1 otherwise

 (17)

where 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑 ∈ ℝ𝑀𝑀×𝑁𝑁 is the discrete cosine transform of the patch 𝐼𝐼. Next, the spectral en-
tropy is used to calculate the information content of the patch 𝐼𝐼:

 𝑆𝑆𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = −∑  𝑛𝑛
𝑖𝑖=1 ∑  𝑛𝑛

𝑗𝑗=1 𝑝𝑝𝑖𝑖,𝑗𝑗ln 𝑝𝑝𝑖𝑖,𝑗𝑗 (18)

where 𝑝𝑝𝑖𝑖,𝑗𝑗 = 𝑃𝑃𝑖𝑖,𝑗𝑗
∑  𝑖𝑖,𝑗𝑗 𝑃𝑃𝑖𝑖,𝑗𝑗

, 𝑃𝑃𝑖𝑖,𝑗𝑗 = 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖,𝑗𝑗)2

(𝑀𝑀×𝑁𝑁)2
, 𝑆𝑆𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the Shannon entropy of the transformed im-

age.

Supplementary Note 5: SPIM registration
It is fundamentally crucial for fusing SPIM datasets to perform on well-registered SPIM
pairs4. In most commercial/scientific light sheet-based setups, for example dual-sided il-
lumination lenses in SPIM and Blaze and dual-sided detection lenses in X-SPIM, lenses
have been well-aligned in advance. Hence, in Leonardo, there is only one scenario re-
quiring registration by the algorithm, that is when opposite detection lenses are mimicked
by rotating the specimen 180°. However, since in different input image stacks, only a
complementary part of the specimen can be well-imaged in detail (Fig. 1B), registration
in SPIM datasets is extremely challenging. Hence, we recommend users of Leonardo-
Fuse to manually register the input stacks in advance, or consider bead-based registra-
tion plugins5 which require embedding fluorescent beads in the mounting medium around
the specimen in advance. Nevertheless, in Leonardo-Fuse, we optimize a 3D image-
based registration workflow in ANTsPy6 which can be useful when pre-registration is not
available. Specifically, in order to ensure as much overlap of usable information of the
specimen as possible, registration is estimated based on fusion result from Leonardo-

Liu et al. 2024 Leonardo 24

Fuse (along illumination) and then applied to both image stacks captured via back detec-
tion lens. Otherwise, for light sheet setups where dual-sided illumination is performed
simultaneously, e.g., Blaze, registration is estimated on the input stacks directly. An illus-
tration of the entire workflow of Leonardo-Fuse when registration in-between is required
is given in Supplementary Fig. 6.

Registration in Leonardo includes three steps in total. Given the two fusion results,
one 𝑋𝑋𝐹𝐹𝐹𝐹 by fusing two stacks with dual-sided illumination and front detection and the
other 𝑋𝑋𝐵𝐵𝐵𝐵 by fusing volumes with dual-sided illumination and back detection, Leonardo
firstly translates 𝑋𝑋𝐵𝐵𝐵𝐵 to the same space as 𝑋𝑋𝐹𝐹𝐹𝐹. To fasten the optimization, this translation
transformation is learnt based on maximum intensity projection (MIP) in 2D. Specifically,
the translation steps along z-axis, namely 𝑡𝑡𝑧𝑧, and x-axis, termed 𝑡𝑡𝑥𝑥, are firstly learnt based
on MIP of 𝑋𝑋𝐹𝐹𝐹𝐹 and 𝑋𝑋𝐵𝐵𝐵𝐵 along y-axis:

 𝑇𝑇1 = �
1 0
0 1

0 𝑡𝑡𝑧𝑧
0 𝑡𝑡𝑥𝑥

0 0
0 0

1 0
0 1

� (19)

whereas the translation step along y-axis, termed 𝑡𝑡𝑦𝑦, is learnt based on MIP of 𝑋𝑋𝐹𝐹𝐹𝐹 and
𝑋𝑋𝑇𝑇1
𝐵𝐵𝐵𝐵 mapped via 𝑇𝑇1 along z-axis:

 𝑇𝑇2 = �

1 0
0 1

0 0
0 0

0 0
0 0

1 𝑡𝑡𝑦𝑦
0 1

� (20)

as a result, 𝑋𝑋𝐵𝐵𝐵𝐵 is mapped as 𝑋𝑋𝑇𝑇1,𝑇𝑇2
𝐵𝐵𝐵𝐵 , which is in the same space as 𝑋𝑋𝐹𝐹𝐹𝐹 via 𝑇𝑇2 × 𝑇𝑇1.

Next, a Rigid transformation is learnt as fine registration, which includes rotation and
translation in 3D simultaneously. As one of the most state-of-the-art toolkits for image
registration, ANTsPy houses top-performing algorithms used worldwide by scientific com-
munities for registering biological or medical imaging data. Nevertheless, one of the major
drawbacks of ANTsPy is being computationally expensive, especially when processing
light sheet-based datasets up to Terabyte scale. Thus, 3D Rigid registration between 𝑋𝑋𝐹𝐹𝐹𝐹
and 𝑋𝑋𝑇𝑇1,𝑇𝑇2

𝐵𝐵𝐵𝐵 is estimated under 8-bit unsigned integer. Moreover, the registration is esti-
mated within a bounding box. The expansion of the bounding box in xy is defined by
segmenting the MIP of 𝑋𝑋𝐹𝐹𝐹𝐹 and 𝑋𝑋𝑇𝑇1,𝑇𝑇2

𝐵𝐵𝐵𝐵 along z-axis. Meanwhile, its expansion along z is
determined such that the bounding box includes no more than 200 × 1024 × 1024 pixels,
tested on 50 GB system random-access memory (RAM), in total in 3D. Additionally, in
case of system RAM smaller than our testing setup, we allow users to define down-sam-
ple ratios, axial_upsample and lateral_upsample for xy and z, respectively, for
registration. As a result, 𝑋𝑋𝑇𝑇1,𝑇𝑇2

𝐵𝐵𝐵𝐵 is mapped as 𝑋𝑋𝑇𝑇1,𝑇𝑇2,𝑇𝑇3
𝐵𝐵𝐵𝐵 after registration using the learnt

transformation matrix 𝑇𝑇3 in a format of:

Liu et al. 2024 Leonardo 25

 𝑇𝑇3 = �

1 𝑚𝑚𝑧𝑧
𝑚𝑚𝑥𝑥 1

𝑛𝑛𝑧𝑧 𝑡𝑡𝑧𝑧
𝑛𝑛𝑥𝑥 𝑡𝑡𝑥𝑥

𝑚𝑚𝑦𝑦 𝑛𝑛𝑦𝑦
0 0

1 𝑡𝑡𝑦𝑦
0 1

� (21)

Finally, in case of the aforementioned Rigid transformation learnt in a down-sampled
space, a descriptor-based Affine registration is learnt under the original resolution. Spe-
cifically, the affine transformation is estimated based on anchor points extracted using 2D
Difference of Gaussian (DoG) method for the sake of memory efficiency. The extracted
descriptors are then registered using Iterative Closest Point (ICP) registration algorithm7,
which is implemented using Open3D package in Python.

Overall, registration in Leonardo includes three rounds, that is translation in 2D, Rigid
in 3D (potentially down-sampled) and Affine transformation in 3D and full-resolution, from
coarse to fine. In addition, lateral and axial resolutions of the input stacks are required by
all three rounds of registration.

Supplementary Note 6: Optimized Leonardo-Fuse for large
tissue
As a GPU-aided post-processing tool, Leonardo-Fuse requires a decent number of com-
putational resources. Moreover, if registration is needed, sufficient system RAM is crucial
(as previously mentioned, ANTsPy, the registration toolbox we use, is computationally
demanding). Therefore, when processing extremely large specimens, a specialized ver-
sion of Leonardo-Fuse has been optimized, as illustrated in Extended Data Fig. 10A in
the main text. In this version, the input volumes are firstly downsampled, where the sam-
pling ratio can be defined by users based on the capabilities of their computing machine.
Especially, this downsampling does not significantly affect the accuracy of the estimated
fusion boundary, owing to the continuity of biological specimens. In comparison, the reg-
istration matrix learnt in the downsampled space, if estimated, may be less accurate.
Therefore, the learned registration matrix is to be refined at full resolution. Considering
the significant computational burden of image-based registration, this refinement is real-
ized using only the final round of descriptor-based Affine registration which is described
in the previous Supplementary Note 5. As a result, given the registered front-back input
pair, Leonardo-Fuse can fuse them based on the upsampled fusion boundary. This fol-
lows the same strategy to refine the fusion boundary based on GF, as described in Meth-
ods in the main text.

Supplementary Note 7: Leonardo-DeStripe-Fuse
Given the fusion boundary along illumination, which is pre-estimated on the stripe-cor-
rupted data, and two input slices with opposing orientations, the integration of Leonardo-

Liu et al. 2024 Leonardo 26

DeStripe-Fuse aims to simultaneously remove stripes in both inputs. In this process, Le-
onardo-DeStripe focuses exclusively on destriping regions that will be incorporated into
the final fusion result. Specifically, within the deep learning-parameterized ADMM frame-
work (illustrated in Extended Data Fig. 2C in the main text), the two input slices (in the
Fourier domain) are first mapped to a high-dimensional feature space using the same
MLPℂ which has been discussed in Methods in the main text. In comparison, the subse-
quent anisotropic TV unit is not shared between the two opposing orientations. Instead,
two separate groups of anisotropic TV units are deployed for each input in parallel. Each
group may consist of multiple anisotropic TV units, with each unit dedicated to resolving
stripes in one specific orientation. Thus, Leonardo-DeStripe-Fuse can be easily extended
to multi-directional light sheet-based systems (e.g., UltraMicroscope Blaze). The learned
feature maps from both inputs are then projected back to one-dimensional space using
the same MLPℂ. Meanwhile, two DC branches work in parallel to infer the baseline com-
ponent for each input after stripe correction. The two outputs of the network, denoted as
𝑋𝑋�1 and 𝑋𝑋�2, are finally projected back to the image space using inverse FFT, and later
fused into 𝑋𝑋� (following definitions used in Methods in the main text) using the same strat-
egy as Leonardo-Fuse (along illumination). The remaining parts, together with the training
process, of the network follow the same strategy as Leonardo-DeStripe. The only differ-
ence is that when composing full-resolution stripe-less result using 𝜆𝜆GF, 𝜆𝜆GF is applied
twice separately to 𝑋𝑋�1 and 𝑋𝑋�2, with the outputs fused again based on the fusion boundary.

Liu et al. 2024 Leonardo 27

References
1. He, K., Sun, J. & Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach.

Intell. 35, 1397–1409 (2013).

2. Dean, K. M. et al. Isotropic imaging across spatial scales with axially swept light-
sheet microscopy. Nat. Protoc. 17, 2025–2053 (2022).

3. He, J. & Huisken, J. Image quality guided smart rotation improves coverage in mi-
croscopy. Nat. Commun. 11, 150 (2020).

4. Li, S., Kang, X. & Hu, J. Image Fusion With Guided Filtering. IEEE Trans. Image
Process. 22, 2864–2875 (2013).

5. Hörl, D. et al. BigStitcher: reconstructing high-resolution image datasets of cleared
and expanded samples. Nat. Methods 16, 870–874 (2019).

6. Tustison, N. J. et al. The ANTsX ecosystem for quantitative biological and medical
imaging. Sci. Rep. 11, 9068 (2021).

7. Rusinkiewicz, S. & Levoy, M. Efficient variants of the ICP algorithm. in Proceedings
Third International Conference on 3-D Digital Imaging and Modeling 145–152
(2001). doi:10.1109/IM.2001.924423.

	Supplementary Information for
	Leonardo: a toolset to remove sample-induced aberrations in light sheet microscopy images
	Supplementary Figures
	Supplementary Fig. 1. A comparison between Leonardo-DeStripe and conventional 2D band-pass FFT filter with different angular coverages of the wedge-shaped mask. From left to right, the angular coverage of the masking region in the FFT filter increases...
	Supplementary Fig. 2. Simulation of striping SPIM. Adipose tissue is used as a stripe-free ground truth image. Structured noise is simulated to mimic horizontal and multiplicative stripes.
	Supplementary Fig. 3. Stripe removal results on zebrafish brain dataset. Leonardo-DeStripe successfully removes the thick stripes without dampening the Fourier projection, compared to the residual stripes from MDSR.
	Supplementary Fig. 4. Stripe removal result using Leonardo-DeStripe on a zebrafish brain dataset. The stripes in the input dataset, which are originally horizontal (Fig. 2F in the main text). We manually rotate the stack 45 to test the extensibility ...
	Supplementary Fig. 5. Simulation of two partially degraded SPIM volumes. Deteriorated stacks are simulated to become more degraded as they get farther from the illumination sources.
	Supplementary Fig. 6. An illustration of registration workflow in Leonardo which is based on ANTsPy (ants). From coarse to fine, Leonardo registers input datasets using their maximum intensity projections (along y axis, i.e., yMIP or along z axis, i.e...
	Supplementary Fig. 7. Registration performance from coarse to fine. The stack acquired using camera in the back is gradually aligned with the volume captured with camera in the front (white and orange arrows in the 3D overlay and white arrows in 2D ov...
	Supplementary Fig. 8. The whole Leonardo-Fuse workflow when registration is required on a H2B-GFP labeled transgenic zebrafish. Leonardo-Fuse (along illumination) is first performed twice for stacks with different detection cameras independently. Regi...
	Supplementary Fig. 9. Normal Leonardo workflow, where DeStripe module is performed on individual dataset separately. Fuse module is then used for dataset integration, which is able to not only fuse stack to maximize optical coverage but also resolve r...
	Supplementary Fig. 10. Workflow of Leonardo-DeStripe-Fuse. Compared to the normal workflow in which Leonardo-DeStripe is performed multiple times on datasets with opposite illumination orientations independently, this fusion-first approach improves co...
	Supplementary Fig. 11. Deconvolution results from foundation model UniFMIR, one of the most recent universal fluorescence microscopy-based image restoration models to address different restoration problems. It can be applied to enhance resolution (yel...
	Supplementary Fig. 12. Multi-angular fusion results from Huygens. After applying Huygens on fusion results from Leonardo-Fuse, sample information is furthered gathered together (white and yellow arrows). However, misalignment exists (circle regions), ...

	Supplementary Notes
	Supplementary Note 1: Leonardo-DeStripe
	1.1 Stripe remover regularized by anisotropic total variation
	1.2 Improvement of Leonardo-DeStripe from Bayesian perspective
	1.3 Guided filtering with various parameters
	1.4 Leonardo-DeStripe is rotatable for stripes with arbitrary directions

	Supplementary Note 2: Simulation of striping objects
	Supplementary Note 3: Simulation of SPIM datasets with sequential dual-sided illumination
	Supplementary Note 4: Information content assessment
	Supplementary Note 5: SPIM registration
	Supplementary Note 6: Optimized Leonardo-Fuse for large tissue
	Supplementary Note 7: Leonardo-DeStripe-Fuse
	References

