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Extended Data Fig. 1. Graphical user Interface (GUI). Leonardo is modular and capsulized individually 
in Napari and can adapt to different SPIM variants and workflows. Specifically, Leonardo-DeStripe and 
Leonardo-Fuse are nested in two Napari widgets separately. 
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Extended Data Fig. 2. Architecture of Leonardo-DeStripe. (A) Overall, Leonardo-DeStripe treats stripe 
removal task in SPIM as mapping stripe-corrupted input to stripe-free output via a local linear transformation, 
supported by the observation that stripes are considered locally consistent along illumination direction. (B) 
The guidance map used by the local linear transformation, which can be low-resolution and even detail 
compromised, is learned via a deep learning neural network (NN) in log space after Fourier transformation, 
where multiplicative stripes are converted into additive noise and thus easier to be modeled. (C) Proposed 
NN follows a split Bregman framework regularized via anisotropic total variation (TV) in latent feature space. 
Specifically, a graph neural network in (D) is nested, in which stripe-corrupted Fourier coefficients are in-
painted as a combination of their neighbors on a polar coordinate system. 
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Extended Data Fig. 3.The effect of guided upsampling in Leonardo-DeStripe. (A) Stripes are visible in 
xy maximum projection, whereas after Leonardo-DeStripe, they are very much resolved. (B) Four typical 
slices are displayed, where Leonardo-DeStripe resolves diverse stripes successfully. (C) The output of 
GNN in Leonardo-DeStripe is suitable to serve as guidance map in a color transformation model, although 
sample details in it may be underscored (Leonardo-DeStripe w/o GF panel). Our modified guided upsam-

pling (termed GF) works significantly better than conventional guided filtering (Leonardo-DeStripe w/o 

𝜆GF panel), with stripes being better compressed. Scale bars: 100 m (A, B, first row in C), 50 m (last two 
rows in C). 
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Extended Data Fig. 4. Simulation results on an adipose tissue. (A) Leonardo-DeStripe’ result resembles 
ground-truth visually, whereas MDSR merges thin stripes into thick ones rather than removing them. (B) 

Leonardo-DeStripe outperforms benchmarking methods in both PSNR and SSIM. Scale bars: 400 m (A). 
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Extended Data Fig. 5. Architecture of Leonardo-Fuse (along illumination). (A) In parallel, Leonardo-
Fuse (along illumination) segments sample-related pixels, and meanwhile, quantifies pixel-level image 
qualities using non-subsampled contourlet transform (NSCT). The used mask to estimate photon propa-
gating path is therefore integrated as regions between left and right boundaries extracted from left seg. and 
right seg., respectively. Only sample-related saliency levels are then fed into an expectation-maximization 
algorithm to estimate the fusion boundary, where the smoothness of the fusion boundary, together with the 
quality of the fused result, are considered alternatively. Before stitching the two SPIM inputs based on the 



 

Liu et al. 2024 Leonardo 8 

fusion boundary, Leonardo-Fuse (along illumination) additionally refine the fusion boundary using guided 
filtering (GF) to ensure smooth transitions near the fusion boundary while maintain distinct selections from 
each stack in areas farther away. The process of refining the fusion boundary using GF is explained in 
detail in (B). 
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Extended Data Fig. 6. Ablation studies of Leonardo-Fuse (along illumination). (A) Result from Leo-
nardo-Fuse (along illumination) on a H2B-GFP-labeled transgenic zebrafish is given, together with the es-
timated fusion boundary at various depth plotted on the right. (B) The consideration of prior knowledge of 
light travel path (enabled by the tissue segmentation) helps Leonardo-Fuse (along illumination) to better 
reject ghost artifacts (white arrows in Leonardo-Fuse w/o seg. panel). Meanwhile, the guided filtering (GF)-
based fusion boundary refinement in (C) allows us to seamlessly stitch multiple datasets without creating 
artifacts (white arrows in Leonardo-Fuse w/o GF panel). (D) Information is integrated by using both baseline 
methods and ours. However, we line plot a segment in (E), where only Leonardo-Fuse (along illumination) 

allows the best data fidelity (perfectly overlap with Left ill.). Scale bars: 100 m (A), 50 m (B-D). 
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Extended Data Fig. 7. Leonardo-Fuse (along illumination) facilitates downstream segmentation task. 
(A) Leonardo-Fuse (along illumination) result on calcium imaging specimen is shown, together with the 
estimated fusion boundary. Two zoom-in regions are given in (B) and (C), where benchmarking methods, 
especicially MST-SR, suffer from halo artifacts (white arrows in (C)). (D) Therefore, when counting cell 
numbers using Cellpose, only Leonardo-Fuse (along illumination) gives exact same result and thus the best 
data fidelity as input with illumination source placed on the right. In comparison, baseline approaches fail 
to detect several cells (white and yellow arrows for BigStitcher-Fuse and MST-SR, respectively). Scale bars: 

100 m (A), 50 m (B, C), 25 m (D).  
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Extended Data Fig. 8. Leonardo-Fuse (along illumination) quantitatively outperforms benchmarking 
methods. (A) Degradation along illumination is simulated on a previously published PEGASOS-cleared 
mouse brain. (B) Leonardo-Fuse (along illumination) successfully learns the fusion boundary, very much 
resemble the ground truth (GT) one. (C) A line plot of a segment (indicated as yellow line in (A)) is given, 
where only Leonardo-Fuse (along illumination) preserves data fidelity (perfectly overlap with left ill.). (D) 
Leonardo-Fuse (along illumination) outperforms both benchmarking methods in terms of both PSNR and 

SSIM. Scale bars: 100 m (A). 
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Extended Data Fig. 9 Architecture of Leonardo-Fuse (along detection). (A) Leonardo-Fuse (along de-
tection) reuses the estimation of fusion boundary four times, two of which along illumination direction and 
the others along detection direction. Since these four “good”-to-“bad” quality boundaries are estimated in-
dependently, they need to be merged into one before fed into fusion boundary refinement module and used 
as guidance for dataset stitching. Decision merge includes two scenarios: (B1) when same region is cov-
ered twice and (B2) when a patch is not considered as “good” by any datasets.  



 

Liu et al. 2024 Leonardo 13 

 



 

Liu et al. 2024 Leonardo 14 

 

Extended Data Fig. 10. Leonardo-Fuse performs fusion on extremely large specimen using man-
ageable computational requirement. (A) Leonardo-Fuse can be optimized to fuse extremely large tissue 
by estimating the fusion boundary, together with the transformation matrix, in a down-sampled space, and 
later refining the registration matrix under original resolution, and applying stitching-based fusion technique 
in high-resolution. (B) Leonardo-Fuse gradually transfers attention from front volume to back stack as get-

ting deeper into the tissue. Scale bars: 500 m. 


