nature methods

Supplementary information https://doi.org/10.1038/s41592-024-02580-4

Segment Anything for Microscopy

In the format provided by the
authors and unedited

https://doi.org/10.1038/s41592-024-02580-4

Supplementary Information

This document contains supplementary material for our manuscript “Segment Anything for
Microscopy”. It contains more extended descriptions of our software implementation and our
user studies that did not fit into the methods section. In addition, it lists the supplementary
videos that contain tutorials for or napari plugin. We also provide supplementary tables that list
all the data used in our study and supplementary figures that give an overview of additional
experiments we have conducted.

Software Implementation

We extend the core functionality of SAM in multiple ways to enable efficient interactive and
automatic segmentation for multidimensional data:

We implement precomputation of the image embeddings. This step takes the bulk of
computation time and is independent of the user-provided annotations, see Fig. 5 a for
time measurements. We also support caching the embeddings to file, so that they do not
have to be recomputed upon restarting the annotation tool for a given input. This is of
particular importance for volumetric or time series data. Image embeddings can also be
precomputed on separate resources with a GPU (e.g. local workstation, on-premise
computer cluster or cloud) and then be copied to the laptop used for annotation.

We implement tiled computation for embeddings as well as interactive and automatic
segmentation. When using this feature the embeddings are computed for overlapping
patches in the input image. In interactive segmentation the tile that best matches the
current annotations is chosen and the mask is predicted for it; the overlap ensures that
objects that are part of multiple tiles can be segmented and the overlap size has to be
chosen accordingly. Tiled embeddings are also precomputed and can be saved to file.
For automatic segmentation (both AMG and AIS) we separate the computationally
expensive steps (computing masks for grid points / applying the decoder) from the
post-processing steps (filtering masks / running seeded watershed). Due to this design
users can interactively adjust the instance segmentation parameters and find the best
settings for their images. It also allows precomputation of the state for automatic
segmentation, which can be stored together with the embeddings. This feature is also
used to efficiently perform the grid search mentioned in the previous section.

We extend SAM’s interactive segmentation functionality to multiple dimensions
(volumetric or 2D + time) by projecting input annotations derived from a given object to
adjacent slices / frames. We derive (low-resolution) input masks, the bounding box and
point annotations and can present SAM with any combination of these input annotations.
The best combination depends on the model type and application; we investigate this in
Ext. Data Fig. 9 a and set the best parameters according to our experiments for a given
model in the plugin for interactive segmentation automatically. For tracking we project
the annotations based on a linear motion model to better follow objects with a directed
movement (see below for details). We use the 10U between the predicted masks in

adjacent slices / frames as a stopping criterion to prevent following objects that are
wrongly segmented or not present anymore (e.g. because the structure being
segmented has stopped or the cell being tracked leaves the frame). This functionality
also supports interactive correction: after adding annotations in a slice / frame the whole
object / track will be recomputed accordingly. For tracking we support cell divisions by
individually tracking the cells after a division event.

e We implement automatic 3D segmentation by segmenting the image volume slice by
slice (using either AMG or AlIS) and then merging objects across slices based on a
multicut graph optimization problem® derived from object overlaps. To reduce
segmentation artifacts due to the lack of 3D context we apply a closing operation before
this step to fully segment objects for which the slice-by-slice segmentation is missing for
some intermediate slices. We evaluate interactive and automatic multidimensional
segmentation in Ext. Data Fig. 9.

Based on this functionality, we implement a tool as a napari plugin. It is made up of five different
widgets: the 2D (i) and 3D (ii) annotation widgets, the tracking annotation widget (iii), the image
series annotation widget (iv) and the finetuning widget (v). We use existing napari functionality
to implement them whenever possible. The napari label layer is used to represent object masks
from interactive and automatic segmentation. This enables using the features of this layer, such
as importing segmentations from file, manually editing objects or saving the layer to file. The
point layer is used to represent point annotations and the shape layer for box annotations. For
the latter case we support rectangle annotations, which are directly mapped to boxes, as well as
ellipse and polygon annotations, which are used to derive the corresponding bounding box and
low resolution mask as input for SAM. The additional GUI elements of our tool are generated
with magicgui®®, which generates menus from type-annotated function signatures and with
PyQT for more complex user interfaces. The interactive segmentation functionality is
implemented with four layers: the point_prompt and prompt layers are used for the
user-provided annotations. The current_object layer contains the objects that are currently being
annotated, and the commited_objects layer contains objects that have already been annotated.
Once the user is done with the current object(s) they press a button to move it (them) to
commited_objects. The tool precomputes the image embeddings for the complete image data,
so that only prompt encoder and mask decoder have to be reapplied when the annotations
change, enabling response times of below one second on a consumer laptop. They also all
support tiled embeddings to enable annotation of large image data.

The 2D and 3D annotation widgets (i, ii) support automatic instance segmentation, which is
implemented via either AMG or AIS, depending on the selected model. Its outputs are stored in
the auto_segmentation layer and its state is precomputed to enable interactively changing
parameters as described above. When using box annotations the 2D annotation widget (i) can
segment multiple objects at a time, one per box, and we also implement a batched annotation
mode that enables segmenting multiple objects with point annotations, one object per positive
point. Interactive correction of an object with point or point and box annotations is only possible
for a single object at a time. In the 3D annotation widget interactive annotation is supported only
for one object at a time. The tracking annotation widget (iii) supports interactive annotation with

dividing objects by extending the point annotations with properties to mark division events and
to differentiate separate cells (mother and daughter cells) within a lineage. Otherwise it supports
similar features to the 2D and 3D widget, without support for automatic segmentation and
restricted to tracking a single lineage at a time. To follow moving objects we use a simple motion
model for projecting prompts to the next frame in interactive tracking by shifting the prompts by
the object’s current motion vector. We compute this motion vector as the weighted moving
average of the object’s center of mass displacement between frames. The weight used for the
moving average is controlled by the motion_smoothing parameter, which can be set in the user
interface. We also implement an annotation widget for a series of 2D or volumetric images (iv),
e.g. for multiple images stored in a folder. This widget precomputes the embeddings for all
images, and then enables the users to iteratively annotate them, automatically saving the
segmentation results per image to a folder. It enables high-throughput annotation of images.
The finetuning widget (v) enables training SAM on user data and offers the settings for the
different hardware configurations we have investigated in Ext. Data Fig. 10 and Supp. Fig. 3.
The individual settings can also be modified. Finetuning is also supported via scripts so that
users with computational experience can run it on resources with more powerful GPUs, like a
compute cluster or in the cloud.

Our contributions are implemented in the ySAM python library. To enable programmatic use we
implement this library in a modular fashion, in particular to enable using most of the functionality
without requiring importing napari and starting a GUI. We use scipy** and scikit-image® as well
as our own library elf (https://github.com/constantinpape/elf) to implement various image
processing logic needed for interactive and automatic segmentation. We provide an extensive
documentation for both the python library and GUI online.

User Study

The first user study was performed by five different annotators, the two others by a single
annotator each. All annotators are experienced with the respective type of data and
segmentation / tracking problem. They familiarized themselves with uSAM and the reference
tools before starting the experiments to measure annotation times and quality. They all used
consumer grade laptops for their experiments. For measuring the annotation times we exclude
long running operations that don’t require manual intervention, such as computing the image
embeddings for uSAM, training models for uSAM and CellPose and computing supervoxels and
the region graph for ilastik carving. These times are reported separately for the first user study
below. Note that our goal is to give a comparison of data annotation with uSAM and widely used
tools for a given annotation task. These experiments have some degrees of freedom, but our
goal was to provide as fair comparisons as possible.

For the user study of the 2D annotation tool we use an internal dataset of organoids imaged
with a Sartorius Incucyte microscope in brightfield microscopy. The organoids were treated with
different drugs that inhibit their growth, including images from control experiments that were not
treated. A typical image contains around 100 organoids, though this number varies depending

https://github.com/constantinpape/elf

on the treatment and the time of imaging. We use a total of 12 images for the annotation
experiments and measure three different quantities: the average annotation time per organoid
(“Annotation Time”), the quality of annotations when compared to consensus annotations via
mean segmentation accuracy (“mSA (Ann)”, see below for details on consensus annotations)
and the generalization quality (“mSA (Test)”), measured by mean segmentation accuracy of the
respective model evaluated on a separate test split with 15 images and associated ground-truth
segmentations. To obtain these measurements for the different methods reported in Fig. 6 a we
proceed as follows:

For “Manual” we annotate 3 images manually using the paint functionality of the napari
label layer. We don’t report “mSA (Test)” here because this method does not involve a
segmentation model.

For “uSAM (Generalist)” we annotate 3 images (same as “Manual’) using the LM
Generalist model. We first segment the organoids automatically using AlS, remove
wrongly segmented objects and then segment the remaining objects interactively. Note
that this model produces too large segmentation masks in interactive segmentation,
likely due to a bias introduced by the training data. We did not further correct these
annotations, leading to fast annotation times but relatively low annotation quality, see
also Fig. 6 a. For “mSA (Test)” we report the performance of the LM generalist model on
the test set.

For “uSAM (Default)” we annotate 6 images (superset of “Manual”). We proceed as for
“‘USAM (Generalist)”, but use AMG for automatic segmentation instead of AlIS. The
values for “mSA (Test)” are computed by finetuning a model on the 6 annotated images
and applying the resulting model to the test set. We start the finetuning from the LM
Generalist model, as it has a pretrained segmentation decoder. We find that its bias to
enlarge object masks of this model is gone after finetuning, see also next point. Note
that the segmentation quality of the default model with AMG itself is not reported in the
table; it achieves an mSA of 0.39 on the test set.

For “uSAM (Finetuned)” we use the finetuned model obtained from “uSAM (Default)” and
annotate 6 different images following the usual procedure (automatic segmentation
followed by correction via interactive segmentation). The values for “mSA (Test)” are
derived from a model that was trained on the 12 images annotated with “uSAM
(Finetuned)” and “uSAM (Default)”. We chose this approach to obtain the model that
would result from a typical annotation workflow, where the user first annotates some
images with a pre-trained model, then finetunes a model, annotates further images with
it and finetunes another model on all annotations.

For “CellPose (Default)” we annotate 3 images (same as “Manual”) with the cyto2 model
in the CellPose GUI. We first automatically segment the organoids and correct the
segmentation using the painting functionality of the CellPose GUI.

For “CellPose (HIL)” we use the human-in-the-loop training functionality of the CellPose
GUI to finetune an image on the so far annotated images after each newly annotated
image. We do this for 6 images (same as “uSAM (Default)”) and for each image first run
automatic segmentation followed by manual correction. We start from the cyto2 model.
For a new image we use the latest model. However, for some cases the model obtained
via finetuing overfits, leading to a bad segmentation results. In these cases we use the

cyto2 model to generate the segmentation instead. The “mSA (Test)” is obtained by
applying the last model from in-the-loop training to the test set.

e For “CellPose (Finetuned)” we use the model obtained after “CellPose (HIL)” to annotate
the 6 new images (same as “uSAM (Finetuned)”) without further training with the usual
approach of automatic segmentation and correction. The “mSA (Test)” is obtained from a
model trained offline on the combined 12 annotated images from “CellPose (HIL) and
CellPose (Finetuned)”, following the same logic as described for “uSAM (Finetuned)”.

For all uSSAM models we use the image series annotation widget and models with ViT-B image
encoder. The consensus annotations were obtained by averaging the foreground pixels of all
annotations for a given image, treating all pixels that were annotated with a fraction of over 0.6
as true foreground. After this, we compute affinities for all annotations, average these and run
mutex watershed*® constraint to the foreground mask to obtain an instance segmentation. This
result is then manually proof-read by one of the annotators. In addition to the measurements in
Fig. 6 a, we have also tracked the average runtimes of preprocessing and training steps:

e Preprocessing with “uSAM (Default)” takes 88.2 +- 55.1 seconds per image.

e Preprocessing with “USAM (Generalist)” and “uSAM (Finetuned)” takes 12.7 +- 8.5
seconds per image.

e Training the model used in “uSAM (Finetuned)” takes 6.8 +- 2.0 hours in total. Note that
training is performed once after all images are annotated.

e Training for “CellPose (HIL)” takes 535.8 +- 6.8 seconds per image. Note that training is
performed after each newly annotated image.

The evaluation code for this user-study can be found at
https://github.com/computational-cell-analytics/user-study-v3.qit.

For the user study of the 3D annotation tool we use an internal dataset of tissue from the fruitfly
larva brain imaged in volume EM. We make use of two small blocks. Each contains ca. 40
nuclei and one of them contains annotations that were also created with ySAM. This block is
used for model finetuning, the other one is used to measure the annotation times as follows:

e For “uSAM (Default)” we annotate it with the default SAM ViT-B model. We use
interactive annotation for all nuclei in the volume. Note that we tried using the finetuned
EM model for mitochondria and nuclei here, but it yielded slightly worse results, most
likely due to the mismatch of resolution and difference in appearance, including imaging
artifacts, of this data compared to the generalist’s training data.

e For “uSAM (Finetuned)” we finetune the default SAM ViT-B model on the other block
(with ground-truth) and then use it for annotation. In this case we first automatically
segment the volume using AlS, remove wrong segmentations and then interactively
segment the remaining nuclei. The training block is of the same size as the annotation
block; generating this training data took around one hour with uSAM.

e For “ilastik” we use the ilastik carving workflow to interactively annotate the training data.
Carving uses a seeded graph watershed based on supervoxels that are derived from an
edge filter applied to the image volume. We first find good choices for edge filter,
supervoxel generation and bias (important parameter) and then annotate the nuclei
interactively with carving.

https://github.com/computational-cell-analytics/user-study-v3.git

We report the average annotation time per object in the annotated block. We visually checked
that all nuclei were segmented in the three annotation results. It was not possible to segment
the nuclei correctly on the pixel level with ilastik carving due to errors in the underlying
supervoxels, resulting in rough segmentation boundaries. The segmentation quality from ySAM
is better (see Fig. 6 c), but some pixel-level errors remain in slices with imaging artifacts. These
could be corrected by manual painting, which was not done for the user study and would
increase annotation times.

For the user study of the tracking annotation tool we make use of two dataset from Schwartz et
al.*', which contain timeseries of nuclei imaged in fluorescence microscopy and ground-truth
annotations for segmentation and tracking. To make the tracking problem more challenging we
use every 3rd frame; we found that using every frame leads to a simple problem that could be
solved almost perfectly by tracking via overlap. We use one of the datasets for the annotation
experiments and the other for finetuning. To measure the annotation times for Fig. 6 c we
proceed as follows:

e For “uSAM (Default)” we annotate each lineage, corresponding to the tracks of a cell
from the initial frame and its daughter cells, with the default ViT-L model using the
interactive annotation functionality of uSAM.

e For “uSAM (LM Generalist)” we proceed similarly to “uSAM (Default)” but use the LM
generalist ViT-L model.

e For “uSAM (Finetuned)” we finetune the ViT-L LM Generalist on the separate dataset
and then annotate the same dataset as in the other experiments. The dataset used for
finetuning is of the same size as the annotation dataset.

e For “TrackMate (Stardist)” we annotate the dataset with TrackMate, starting from an
initial nucleus segmentation provided by StarDist. We use the StarDist integration of
TrackMate to obtain it. TrackMate then computes an automated tracking result, which is
then corrected with TrackMate’s in-built correction functionality.

We report the average time per track, corresponding to the track of a single cell ending at a
division event or at the end of the timeseries. The timeseries contains 107 tracks. Note that
SAM currently doesn't support automatic tracking, which is a disadvantage compared to
TrackMate. We plan to support this feature in the future. In addition, note that TrackMate relies
on initial segmentation from StarDist (it also supports ilastik or CellPose) and does not enable
model finetuning. For the data used here the StarDist segmentation is good enough to not
impede the tracking result, but for more difficult cases where the segmentation problem is not
solved to such a high quality, this fact could be a disadvantage compared to uSAM. We have
validated the tracking annotations obtained with all four approaches using the tracking score
(TRA) defined in the Cell Tracking Challenge (see Inference and Evaluation for details, higher
scores are better and 1.0 is best). The scores are 0.984 for “uSAM (Default)”, 0.982 for “uSAM
(Generalist)”, 0.973 for “uSAM (Finetuned)” and 0.950 for “TrackMate (Stardist)”. The scores for
MSAM are all comparable and better than TrackMate. Given the limited nature of this study we
don’t want to claim a general advantage of our approach here, more experiments would be
needed for this.

https://docs.google.com/document/d/1U79HPB3EkHxC5LlY798zh0s7gUhhVlMOuZ1GC4ebwz8/edit?tab=t.0#heading=h.sjix856x88w4

Supplementary Videos

Supplementary Video 1: Quick-start video that explains the installation and how to get started.
The video is available at https://youtu.be/gcv0fa84mCc.

Supplementary Video 2: Tutorial for the 2D annotation tool. The video is available at
https://voutu.be/9xjJBg_Bfuc.

Supplementary Video 3: Tutorial for the 3D annotation tool. The video is available at
https://youtu.be/ngpyNQSyu74.

Supplementary Video 4: Tutorial for the tracking annotation tool. The video is available at
https://youtu.be/1gg8OPHqOvyc.

Supplementary Video 5: Tutorial for the image series annotation tool. The video is available at
https://youtu.be/HgRolmdTX3c.

Supplementary Tables
Dataset Image Annotations | Source Used for | Size in GB |
Modality Num. Samples
(Avg. Dimension:
YxX,ZxY xX)
LIVECell [Phase-Contrast | Cells Edlund et al.® Generalist | 5.61| 5239
Microscopy Training (520, 704)
and
Evaluation
DeepBacs | Different Bacteria Spahn et al.® Generalist | 0.27 | 190
Label-free Training (771,771)
Modalities and
Evaluation
TissueNet | Whole Tissue Cells Greenwald et Generalist | 8.21 | 7002
Imaging al.? Training (350, 350)
and
Evaluation
PlantSeg | Lightsheet Cells Wolny et al.* Generalist | 2.03 | 28
(Root) Microscopy Training (352, 503, 1310)
and
Evaluation
DSB Fluorescence | Nuclei Caicedo et al.?® | Generalist | 0.19 | 497

https://youtu.be/gcv0fa84mCc
https://youtu.be/9xjJBg_Bfuc
https://youtu.be/nqpyNQSyu74
https://youtu.be/1gg8OPHqOyc
https://youtu.be/HqRoImdTX3c

Nuclei Microscopy Training (328, 363)
NeurlPS [Different LM Cells Ma et al.?® Generalist | 9.93 | 1151
CellSeg Modalities Training (1040, 1118, 3)
Covid IF | Immuno- Cells Pape et al.* Generalist | 0.49 | 49
fluorescence Evaluation | (1001, 1024)
HPA Confocal Cells Ouyang et al.® Generalist | 8.43 | 276
Microscopy Evaluation | (4, 2062, 2062)
Lizard Histopathology | Nuclei Graham et al.*® | Generalist | 0.66 | 238
Evaluation | (3, 934, 1055)
Mouse Lightsheet Nuclei Bondarenko et Generalist | 8.59 | 35
Embryo Microscopy al.® Evaluation | (120, 852, 585)
PlantSeg | Confocal Cells Wolny et al.* Generalist | 3.22 | 31
(Ovules) Microscopy Evaluation | (317, 910, 948)
Cell Different LM Cells Ulman et al.*’ Generalist | 4.05 | 7599
Tracking Modalities Training (Heterogeneous)
Challenge
Dynamic | Fluorescence | Nuclei Schwartz et al.*’ | User 2.44 7084
Nuclear Modalities study (512, 512)
Net
PanNuke [Histopathology | Nuclei Gamper et al.®® | Generalist | 2.09 | 3
Evaluation | (3, 2634, 256, 256)

Supplementary Table 1: Overview of LM datasets, including imaging modality, annotated

structure, corresponding publication, use within our paper and size of the dataset. The cell
tracking challenge data contains a mix of different datasets, for which we do not report the
average dimensions because they are too diverse.

Dataset Image Annotations | Source Used for Details:
Modality Size (in GB) |
Num. Samples
(Avg. Dimension:
YxX,ZxY xX)
Lucchi FIBSEM Mitochondria | Lucchi et al.* Generalist | 0.21 |2
Evaluation | (165, 768, 1024)
MitoLab Different EM | Mitochondria | Conrad et al.® Generalist | 6.26 | 594
Training Modalities Training (374, 393)
MitoLab Different EM | Mitochondria | Conrad et al.® Generalist | 4.12] 106
Evaluation | Modalities Evaluation | (Heterogeneous)

MitoEM SBEM Mitochondria | Wei et al.® Generalist | 30.24 | 6
Training (334, 4096, 4096)
and
Evaluation
UroCell FIBSEM Mitochondria | Meku¢ et al.¥” Generalist [0.17 |8
Evaluation | (256, 256, 256)
VNC TEM Mitochondria | Gerhard et al.®> | Generalist | 0.04 | 2
Evaluation | (20, 1024, 1024)
CREMI TEM Neuronal Funke et al.® Specialist | 0.57 | 3
processes Training (125, 1250, 1250)
and
Evaluation
NucMM-M | High-energy | Nuclei Lin et al.* Generalist | 0.03 | 8
X-Ray Evaluation | (192, 192, 192)
PlatyEM SBEM Nuclei Vergara et al.* Generalist | 2.86 | 12
(Nuclei) Training (130, 442, 432)
and
Evaluation
PlatyEM SBEM Cilia Vergara et al.* Generalist | 0.31|5
(Cilia) Evaluation | (98, 899, 816)
ASEM FIBSEM Mitochondria | Gallusser et al.** | Generalist | 19.1|6
(Mito) Evaluation | (1150, 772, 2566)
ASEM (ER) | FIBSEM Endoplasmic | Gallusser et al.*’ | Specialist | 18.13 |5
Reticulum Training (1099, 647, 2537)
and
Evaluation
SpongeEM | FIBSEM Cells, cilia Musser et al.® | Generalist | 0.16 | 3
and microvilli Evaluation | (96, 896, 896)

Supplementary Table 2: Overview of EM datasets, including imaging modality, annotated
structure, corresponding publication, use within our paper and size of the dataset. The MitoLab
evaluation data contains a mix of different datasets, for which we do not report the average
dimensions because they are too diverse.

Supplementary Figures

Default SAM

Finetuned SAM

a

AMG
—— CellPose
I Box
B Point
—_— AIS

Mean Segmentation Accuracy
I3 o I I3 I3 IS I
N w £ w (<)) ~ o]

=4
o

0 1 2 3 4 5 6 7
Iterations

Default SAM

Iterations

Finetuned SAM

AMG
—— CellPose
I Box
I Point
— AIS

Mean Segmentation Accuracy
o o o o o I o
N w ») o g9 53

o
i

3 4
Iterations

Iterations

Supplementary Figure 1: Comparison of interactive segmentation without (a) and with (b) use of
the previous segmented mask as additional prompt. We compare the default and finetuned
ViT-L model on LIVECell, the experimental set-up corresponds to Fig. 2 a. For b we update the
interactive segmentation evaluation to also use the previous output of the model as prompt in
the next iteration. We perform this experiment to investigate a difference between our and the
original SAM training scheme: we only use the mask prompt with a 50% probability during
training whereas the original seems to always use it (according to the description in Kirilov et al.,
which is consistent with the results here). We find that the original model only improves
consistently with corrections when the additional mask prompt is used, whereas our model
improves consistently in both settings. The set-up used for interactive segmentation for all other

experiments corresponds to a because this is how we have implemented interactive annotation
in our napari tools. Using mask prompts would complicate the implementation significantly.

Foreground / Instances
Background

Boundary
Distances

Image

Center
Distances

11823AIN

(W32) qeon

CellPose AMG (Default) AMG (Generalist) AIS (Generalist)

Image

et

118031
Ne)

(ASASHS)

e
(Z4nH)
1120317

(enoxs)
18237

dl pirod

MitoNet AMG (Default) AMG (Generalist) AIS (Generalist)

Image

(suebBsje Q) (W3L) (WaL)
geToNI qeonn geoHA

Supplementary Figure 2: Automatic segmentation implementation and results. a. Targets for
center and boundary distances as well as foreground map used for AIS training, shown for two
example images. b. Automatic segmentation results for LIVECell and Covid IF, comparing
CellPose with AMG for the default SAM and our LM generalist model as well as AIS for the
generalist. ¢ shows a similar comparison for mitochondrion segmentation, with MitoNet
reference results.

Intel Cascade Lake Xeon Platinum 9242 (32GB CPU RAM) Intel Cascade Lake Xeon Platinum 9242 (64GB CPU RAM)
1.00; Default Generalist 1.00; Default Generalist
______________ SENNPTLL,
0.95] e 0.95
H 8
o 0.90] 8 o0.90
2 3
2 2
S o0ss © % 085
ol >
] o
4 £
H 3
& 080 t7al 1 2 5 10 initial 1 2 5 10 E 0807 7gial 1 2 5 10 initial 1 2 5 10
§ 0.0 5 060
g g
£ o050 £ 050
£ £
0.40{)
& g o0
0.30] 0.30
0.20 // . 0.20 A
.................................
0.10 0.10 —
initial i 2 5 10 nitial i 2 5 10 initial i 2 5 10 initial i 2 5 10
Number of Images Number of Images
—e— AIS (FFT) AMG (FFT) Point (FFT) —e— Box (FFT) —e— AIS (FFT) AMG (FFT) Point (FFT) ~ —e— Box (FFT)
-+ AIS (LORA) AMG (LoRA) Point (LoRA) --e:- Box (LORA) -+ AIS (LORA) AMG (LoRA) Point (LORA) e~ Box (LoRA)
NVIDIA Quadro RTX5000 (16GB VRAM) NVIDIA Tesla V100 (32GB VRAM)
1.00 Default Generalist 1.00; Default Generalist
FE—— P X
P s e e [ORI]
........ R oreeeennns :_’r,.—/
................ . g -
0.95 o 0.95
2 g
3 0.0 " 0.90
2
2 °
: :
% o085 2 oss!
> H
g 5
3 o.s0. Y 0.0 - .
8 " initial i 2 5 10 initial i 2 5 10 < Vlnitial i 2 5 10 initial i 2 5 10
£ 060 § o.60;
2 s
H 5
£ 050 T S—— § 030
R T T ST g
o o
.4
2 0.0/ 8 0.40'
@a
0.30
0.30 e
e 020 AT L waiiiig
0.20 e rrssrssease 0.10
P
0.10{
initial 1 2 5 10 initial i 2 5 10 initial i 2 5 10 initial 1 2 5 10
Number of Images Number of Images
—e— AIS (FFT) AMG (FFT) Point (FFT) —e— Box (FFT) —e— AIS (FFT) AMG (FFT) Point (FFT) ~ —e— Box (FFT)
-0+ AIS (LORA) AMG (LoRA) Point (LoRA) --e:- Box (LoRA) -+ AIS (LORA) AMG (LoRA) Point (LORA) --e-- Box (LoRA)

Supplementary Figure 3: Resource efficient finetuning on Covid IF dataset for four different
hardware configurations. The overall experimental set-up corresponds to Fig. 5 b. Dashed lines
indicate parameter-efficient training with LORA using rank 4. The corresponding settings are
given in Supp. Fig. 12 ¢ and the training times in Supp. Fig. 12 d. We do not see significant
differences between the segmentation quality between the finetuning settings for this
experiment. But note that training on a GPU is much faster (Supp. Fig. 12 d).

Mean Segmentation Accuracy

Mean Segmentation Accuracy

Mean Segmentation Accuracy

Automatic Instance Segmentation (LIVECell)

UNETR UNETR SamDecoder SamDecoder
(scratch) (SAM) (scratch) (SAM)

Automatic Instance Segmentation (Covid IF)

0.40
0.35
0.30
0.25
0.20
0.15 .
S
L 2
./
010 .
1 2 5 10
Number of Images
UNet UNETR o. UNETR ~~ SamDecoder __ SamDecoder
e (scratch) ~ % (SAM) (scratch) (SAM)
+ ¢ —
0.8 N . —t
A 4 v v
0.7
. —"
0.6
0.5
,//.
%
0.4
0.3
0.2
o1
AMG —4— Point —4— Box —4— Ip —4— g —4— AIS
0.0

"~ Default LoRA LoRA LoRA LoRA LoRA Full
(Rank 1) (Rank 2) (Rank 4) (Rank 8) (Rank 16) Finetuning

Finetuning Strategy

Supplementary Figure 4: Comparison of different architectures for instance segmentation and
LoRA ranks. a comparison of five different set-ups for automatic instance segmentation trained
on the LIVECell training split and evaluated on its test split. We compare a 2D UNet®? (64 initial
channels which are doubled across four downsampling layers) with four different set-ups that
build on top of the SAM architecture: UNETR*® denotes the SAM image encoder followed by a
convolutional decoder. SamDecoder denotes the SAM image encoder followed by the SAM
mask decoder. We use ViT-B as image encoder for the SAM derived architectures. For the
(scratch)-models the weights of the image encoder are randomly initialized and for the
(SAM)-models they are initialized with the default SAM weights; for SamDecoder the decoder
weights are also initialized with the model weights in this case. We predict a foreground and two
distance channels with all five models, and then follow the instance segmentation procedure
outlined in Methods. The results show comparable segmentation quality for all five models, with
a slight advantage for SAM initialized models and a slight advantage of UNETR over
SamDecoder. b comparison of architectures for automatic instance segmentation on Covid-IF.
We use the same model set-up as in a and the same data splits (1, 2, 5, 10 training images) as
in Fig. 5. Here, we see that the SAM initialized models perform clearly better, and that UNETR is
better than SamDecoder. These results highlight the value of weight initialization for small
training data and our decoder architecture choice. ¢ comparison of LoRA ranks on the LIVECell
dataset. Training and evaluation set-up correspond to Fig. 2 a and other LIVECell experiments.
We vary the rank of projection tensors used for parameter reduction in LoRA from 1 to 16, see
the LoRA publication*® for details on the low-rank tensor decomposition. “Default” indicates the
pre-trained SAM and “Full Finetuning” indicates updating all weights (the standard training
strategy used in all experiments not involving LoRA). The experiment is done with ViT-B .
Overall, we see that the segmentation quality increases modestly with LoRA rank and that full
finetuning provides modest advantages over LoRA. However, given that LoRA does not provide
a consistent improvement in training times (see Supp. Fig. 12 d), we do not use LoRA by default
when finetuning models.

Additional References

The references here refer to the same numbering as in the main manuscript. Here, we only
provide additional references that are used in the supplementary material, but are not used in
the main manuscript.

61. Ouyang, W. et al. Analysis of the Human Protein Atlas Image Classification competition.
Nat. Methods 16, 1254—1261 (2019).

62. Gerhard, S. et al. Segmented anisotropic ssTEM dataset of neural tissue. figshare.

http://dx.doi.org/10.6084/m9.figshare.856713 (2013).

63. Funke, J. et al. MICCAI Challenge on Circuit Reconstruction from Electron Microscopy

https://docs.google.com/document/d/1U79HPB3EkHxC5LlY798zh0s7gUhhVlMOuZ1GC4ebwz8/edit#heading=h.19hmhb34r13
https://www.zotero.org/google-docs/?broken=KlRTFe
https://www.zotero.org/google-docs/?broken=KlRTFe
http://dx.doi.org/10.6084/m9.figshare.856713

Images. https://cremi.org/ (2016).

64. Musser, Jacob M. et al. Profiling cellular diversity in sponges informs animal cell type and

nervous system evolution. Science 374.6568 (2021): 717-723.

https://doi.org/10.1126/science.abj2949

65. Gamper, J. et al. PanNuke: An Open Pan-Cancer Histology Dataset for Nuclei Instance

66.

Segmentation and Classification. Digital Pathology: 15th European Congress, ECDP 2019,
Warwick, UK, April 10-13, 2019, Proceedings 15. Springer International Publishing, 2019.
https://doi.org/10.1007/978-3-030-23937-4_2

Beier, T. et al. Multicut brings automated neurite segmentation closer to human

performance. Nat. Methods 14, 101-102 (2017).

https://cremi.org/
https://doi.org/10.1126/science.abj2949
https://doi.org/10.1007/978-3-030-23937-4_2

