

Supplementary Figure 1: Processing pipeline and class selection criteria for the UMAP classifier. A: Processing pipeline of marmoset, mouse and human data. NEURONEX logo indicate the different member labs by country. B: Criteria for training data for class 1, 2 and 3 based on Cre-dependent mouse lines and e-types. C: Visualization of electrophysiological features across cells as seen on www.primatedatabase.com. Each line represents a cell. Color of the line was assigned by first feature, i.e. action potential width.

Supplementary Figures

A: Comparison of AP waveform features by dendritic type (left: aspiny PFC, right: spiny PFC): in blue Multiclamp (MC) 700B (spiny: n = 56, aspiny: 15), in gold HEKA (spiny: n = 4, aspiny: n = 8), and in purple npi's single electrode clamp (SEC) amplifier (spiny: n = 12, aspiny: n = 9). **B:** Comparison of effect sizes across features with 95 % confidence interval between HEKA and NPI per feature and dendritic type (red: aspiny, green: spiny) based on the data shown in A. The first three features were excluded as input for UMAP projection due to a noticeable effect in aspiny cells caused by amplifier type. **C:** 2D UMAP Projection with marmoset cells colored by recording system.

Supplementary Figure 3: A: Panel of pie charts showing cell type composition of training (mouse) and human test data. Three different classes were used: Class 1 (dark blue; C1), Class 2

(ocher, C2), with example morphologies of human C2 (right side, ocher dendrites) and human C1 cells (left side, dark blue dendrites). B: Example UMAP visualization of one model prediction referenced with dendritic type of human cells. Shaded areas indicate high density of the respective class. C: Performance of classifier across repetitions. Horizontal boxplots show distribution of performances. Median test performances by species were 91.3% for mouse, 83.3% for marmoset and 74.5% for humans. D: Confusion matrices for human test data showing all classification totals. The positive predictive value (PPV) for C1 cells is over 90% similar to the marmoset. FDR = False Discovery Rate, TPR = True Positive Rate, FNR = False Negative Rate. E: Pie charts showing proportion of dendritic type per majority classifier prediction.

Supplementary Figure 5: AP width difference between V1 and LPFC replicated across laboratories and relationship with bursting index.

A,C Distribution of action potential (AP) width by area (turquoise : V1, orange: PFC): class 1 cells are depicted with box plots in C, whereas class 2 cells are depicted in violin plots. Marker color indicates different acquisition system (blue: MC700B, yellow: HEKA, purple: NPI). **B** Scatter plot of burst index and AP width for data shown in A. Features depicted correlate weakly (Spearman rho ρ = 0.195). **D** Scatter plot of burst index and AP width for data shown in C. Features depicted correlate moderately with ρ = 0.407.

Supplementary tables

Feature	LPFC (n = 10)	V1 (n = 19)	adj. p-value	z-value	Effect size
Vrest, mV	-66.33	-63.93	0.2951	-1.54	0.29 [-0.09;0.64]
$R_{inHD}, M\Omega$	231.32	222.46	0.3278	1.26	-0.24 [-0.57; 0.13]
rheobase, pA	85.00	195.00	0.2103	-1.92	0.37 [-0.02; 0.70]
τ, ms	12.02	13.36	0.8080	-0.30	0.06 [-0.32; 0.42]
sag ratio	1.11	1.13	0.6959	-0.60	0.12 [-0.29; 0.50]
inst. rectification	0.82	0.81	1.0000	0.00	0.00 [-0.42; 0.43]
AP width	0.35	0.27	0.0369*	2.69	-0.51 [-0.75; -0.22]
amp. fast trough	-21.03	-24.48	0.3132	1.45	-0.28 [-0.60; 0.06]
rate of rheo, Hz	2.00	1.00	0.2942	1.61	-0.31 [-0.59; 0.03]
med. inst. rate, Hz	114.42	145.56	0.3278	-1.31	0.25 [-0.15; 0.63]
IQR inst. rate, Hz	48.87	47.43	0.6959	0.64	-0.13 [-0.50; 0.28]
adaRat Blast/B1	0.55	0.44	0.3278	1.33	-0.26 [-0.58; 0.12]
flslope, Hz/pA	0.66	0.78	0.8080	-0.34	0.07 [-0.33; 0.43]
cvISI	0.24	0.18	0.4412	1.03	-0.20 [-0.56; 0.16]
rate of hero, Hz	71.00	85.00	0.7869	-0.44	0.09 [-0.35; 0.51]
latency at hero, ms	7.78	4.58	0.0369*	3.05	-0.58 [-0.78; -0.31]
adaptation index	0.01	0.00	0.2942	1.65	-0.32 [-0.65; 0.08]
difference in trough	-1.92	-4.81	0.0369*	2.82	-0.54 [-0.79; -0.21]
burst index	0.74	0.63	0.0369*	2.66	-0.51 [-0.74; -0.21]

Supplementary Table 1: Electrophysiological characteristics of Class 1 neurons in LPFC and V1

Note: Values are median of electrophysiological characteristics in class 1 cells of LPFC and V1.

Feature	Definition	UMAP input
AP width	Width of the 1 st AP of the rheobase sweep at half amplitude determined from threshold to peak.	Yes
AP threshold	Threshold of the first rheobase action potential determined as membrane potential at which 5% percent of the peak slope of the rising phase is reached.	Yes
fast trough	Minimum membrane potential within 1.5 ms after the first rheobase AP has reached threshold level again.	Yes
slow through	Minimum membrane potential after the first rheobase AP has reached threshold level again up to the next AP or the stimulus end.	Yes
latency	Time difference between stimulus onset and threshold of the first action potential at the rheobase sweep.	Yes
rheobase rate	Number of spikes at the rheobase sweep.	Yes
hero sweep rate	Number of spikes at the hero sweep. The hero sweep is defined as the sweep closest to 65 % of the sweep with max. firing rate.	Yes
hero sweep current step	Current step of the hero sweep.	Yes
hero sweep latency	Time difference between stimulus onset and threshold of the first AP at the hero sweep.	Yes
median instantaneous rate	ISIs pooled across stimulus intensities. This is inverse to the median ISIs.	Yes
P ₉₀ total ISIs	90 th percentile of ISIs pooled across stimulus intensities.	Yes
P ₁₀ total ISIs	10 th percentile of ISIs pooled across stimulus intensities.	Yes
interquartile range total ISIs	Interquartile range of ISIs pooled across stimulus intensities.	Yes
adaptation ratio (last bin)	Stimulus divided into 13 bins of 77 ms each. Spike counts per bin are summed up across stimulus intensities. Ratio is calculated by first bin and last bin with non-zero value.	Yes
input resistance (highest deflection)	Slope of linear fit of IU data of the three lowest current steps. Voltage determined by membrane potential change to highest deflection within the first 200 ms of the stimulus.	Yes
input resistance (steady state)	As above but: Voltage determined by membrane potential change to steady-state potential within the last 200 ms of the stimulus.	Yes
time constant / τ	Maximum tau of hyperpolarizing current steps with a membrane deflection between 2 and 11 mV. Tau is calculated as time point when the exponential fit of the membrane potential deflection from stimulus onset to highest deflection reaches 66%.	Yes
Vm	Mean of all sweep baseline membrane potentials of all sweeps calculated as mean of the prestimulus interval.	Yes
V _m sag sweep	Mean of the prestimulus interval of the sag sweep.	Yes
delayed rectification	Ratio between steady-state membrane deflection and hypothetical steady-state deflection based on the input resistance at the most hyperpolarizing sweep.	Yes

Supplementary Table 2: Description of electrophysiological features

instantaneous	Ratio between highest membrane deflection and hypothetical	
rectification	highest deflection based on input resistance at the most	
	hyperpolarizing sweep.	
rheobase	Current step at the rheobase sweep. Rheobase sweep is	Yes
	determined as the sweep with the lowest number of spikes.	
sag	Difference in membrane potential between steady-state and	Yes
	highest deflection at the sag sweep. Sag sweep is calculated in	
	the lowest hyperpolarizing stimulus sweep with a deflection higher	
	than 11 mV.	
sag ratio	(Sag + steady-state depolarization) divided by steady-state	Yes
	depolarization. Sag ration 1 = no sag. Sag ratio 1.5 = sag is half of	
	the steady-state depolarization.	
sag sweep	Current step at the sag sweep.	Yes
current step		
adaptation ratio	As adaptation ratio (last bin) but: ratio is calculated by first and	Yes
(2 nd bin)	second bin.	
trough	Difference in membrane potential between 1 st AP and 2 nd last AP	Yes
difference	in the hero sweep	
trough ratio	Ratio between trough difference and difference between baseline	Yes
	membrane potential and trough of the 2 nd last AP.	
peak adaptation	Ratio of the height of the 1 st AP and last AP of the hero sweep.	Yes
burst	1-Ratio of 1 st ISI divided by mean ISI of the remaining ISIs from	No
	the hero sweep.	
CVISI	Coefficient of variation of ISIs of a sweep. Calculated as SD	No
	divided by mean at the hero sweep.	
I-f slope	slope of a robust linear fit of the I-f curve.	No
adaptation index	Average rate of change in ISIs at hero sweep.	No