| Property | Value |
| Working Groups | RG Priesemann |
| Subproject | None |
| Open Access | Yes |
| Publication Type | Preprint |
| Peer Reviewed | No |
| DOI | 10.48550/arxiv.2306.02149 |
| Publication Year | 2023 |
| Title | Infomorphic networks: Locally learning neural networks derived from partial information decomposition |
| Journal | arXiv |
| eISSN | 2331-8422 |
| URL | https://arxiv.org/abs/2306.02149 |
| Journal Abbreviation | arXiv |
| Extra | Not yet finally published in a peer-reviewd journal. |
| Authors | Graetz M, Makkeh A, Schneider AC, Ehrlich DA, Priesemann V, Wibral M |
| First Author | Graetz M |
| Last Author | Wibral M |
External Resources
arxiv.org/pdf/2306.02149https://arxiv.org/pdf/2306.02149
Article fulltext
0000-0001-8905-5873https://orcid.org/0000-0001-8905-5873
ORCID identifier (Viola Priesemann)
05a28rw58https://ror.org/05a28rw58
ROR identifier (05a28rw58, ETH Zurich)
0087djs12https://ror.org/0087djs12
ROR identifier (0087djs12, Max Planck Institute for Dynamics and Self Organization)
05xy1nn52https://ror.org/05xy1nn52
ROR identifier (05xy1nn52, Multiscale Bioimaging)
mbexc.de...ition/https://mbexc.de/infomorphic-networks-locally-learning-neural-networks-derived-from-partial-information-decomposition/
Website entry (mbexc.de)